ray/rllib/tuned_examples/atari-dqn-tf-and-torch.yaml
Sven Mika f7e4dae852
[RLlib] DQN and SAC Atari benchmark fixes. (#7962)
* Add Atari SAC-discrete (learning MsPacman in 40k ts up to 780 rewards).
* SAC loss function test case fix.
2020-04-17 08:49:15 +02:00

33 lines
994 B
YAML

# Runs on a single g3.4xl node
# See https://github.com/ray-project/rl-experiments for results
atari-basic-dqn:
env:
grid_search:
- BreakoutNoFrameskip-v4
- BeamRiderNoFrameskip-v4
- QbertNoFrameskip-v4
- SpaceInvadersNoFrameskip-v4
run: DQN
config:
double_q: false
dueling: false
num_atoms: 1
noisy: false
prioritized_replay: false
n_step: 1
target_network_update_freq: 8000
lr: .0000625
adam_epsilon: .00015
hiddens: [512]
learning_starts: 20000
buffer_size: 1000000
rollout_fragment_length: 4
train_batch_size: 32
exploration_config:
epsilon_timesteps: 200000
final_epsilon: 0.01
prioritized_replay_alpha: 0.5
final_prioritized_replay_beta: 1.0
prioritized_replay_beta_annealing_timesteps: 2000000
num_gpus: 0.2
timesteps_per_iteration: 10000