ray/rllib/examples/custom_env.py

138 lines
4.7 KiB
Python

"""Example of a custom gym environment and model. Run this for a demo.
This example shows:
- using a custom environment
- using a custom model
- using Tune for grid search
You can visualize experiment results in ~/ray_results using TensorBoard.
"""
import argparse
import gym
from gym.spaces import Discrete, Box
import numpy as np
import os
import ray
from ray import tune
from ray.tune import grid_search
from ray.rllib.models import ModelCatalog
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.test_utils import check_learning_achieved
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument("--torch", action="store_true")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--stop-iters", type=int, default=50)
parser.add_argument("--stop-timesteps", type=int, default=100000)
parser.add_argument("--stop-reward", type=float, default=0.1)
class SimpleCorridor(gym.Env):
"""Example of a custom env in which you have to walk down a corridor.
You can configure the length of the corridor via the env config."""
def __init__(self, config):
self.end_pos = config["corridor_length"]
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(
0.0, self.end_pos, shape=(1, ), dtype=np.float32)
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
def step(self, action):
assert action in [0, 1], action
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1.0 if done else -0.1, done, {}
class CustomModel(TFModelV2):
"""Example of a keras custom model that just delegates to an fc-net."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super(CustomModel, self).__init__(obs_space, action_space, num_outputs,
model_config, name)
self.model = FullyConnectedNetwork(obs_space, action_space,
num_outputs, model_config, name)
def forward(self, input_dict, state, seq_lens):
return self.model.forward(input_dict, state, seq_lens)
def value_function(self):
return self.model.value_function()
class TorchCustomModel(TorchModelV2, nn.Module):
"""Example of a PyTorch custom model that just delegates to a fc-net."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
self.torch_sub_model = TorchFC(obs_space, action_space, num_outputs,
model_config, name)
def forward(self, input_dict, state, seq_lens):
input_dict["obs"] = input_dict["obs"].float()
fc_out, _ = self.torch_sub_model(input_dict, state, seq_lens)
return fc_out, []
def value_function(self):
return torch.reshape(self.torch_sub_model.value_function(), [-1])
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
# Can also register the env creator function explicitly with:
# register_env("corridor", lambda config: SimpleCorridor(config))
ModelCatalog.register_custom_model(
"my_model", TorchCustomModel if args.torch else CustomModel)
config = {
"env": SimpleCorridor, # or "corridor" if registered above
"env_config": {
"corridor_length": 5,
},
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"model": {
"custom_model": "my_model",
"vf_share_layers": True,
},
"lr": grid_search([1e-2, 1e-4, 1e-6]), # try different lrs
"num_workers": 1, # parallelism
"framework": "torch" if args.torch else "tf",
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, config=config, stop=stop)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()