ray/rllib/execution/multi_gpu_learner_thread.py

221 lines
8.9 KiB
Python

import logging
from six.moves import queue
import threading
from ray.rllib.execution.learner_thread import LearnerThread
from ray.rllib.execution.buffers.minibatch_buffer import MinibatchBuffer
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.annotations import override
from ray.rllib.utils.deprecation import deprecation_warning
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.metrics.learner_info import LearnerInfoBuilder, \
LEARNER_STATS_KEY
from ray.rllib.utils.timer import TimerStat
from ray.rllib.evaluation.rollout_worker import RolloutWorker
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
class MultiGPULearnerThread(LearnerThread):
"""Learner that can use multiple GPUs and parallel loading.
This class is used for async sampling algorithms.
Example workflow: 2 GPUs and 3 multi-GPU tower stacks.
-> On each GPU, there are 3 slots for batches, indexed 0, 1, and 2.
Workers collect data from env and push it into inqueue:
Workers -> (data) -> self.inqueue
We also have two queues, indicating, which stacks are loaded and which
are not.
- idle_tower_stacks = [0, 1, 2] <- all 3 stacks are free at first.
- ready_tower_stacks = [] <- None of the 3 stacks is loaded with data.
`ready_tower_stacks` is managed by `ready_tower_stacks_buffer` for
possible minibatch-SGD iterations per loaded batch (this avoids a reload
from CPU to GPU for each SGD iter).
n _MultiGPULoaderThreads: self.inqueue -get()->
policy.load_batch_into_buffer() -> ready_stacks = [0 ...]
This thread: self.ready_tower_stacks_buffer -get()->
policy.learn_on_loaded_batch() -> if SGD-iters done,
put stack index back in idle_tower_stacks queue.
"""
def __init__(
self,
local_worker: RolloutWorker,
num_gpus: int = 1,
lr=None, # deprecated.
train_batch_size: int = 500,
num_multi_gpu_tower_stacks: int = 1,
num_sgd_iter: int = 1,
learner_queue_size: int = 16,
learner_queue_timeout: int = 300,
num_data_load_threads: int = 16,
_fake_gpus: bool = False,
# Deprecated arg, use
minibatch_buffer_size=None,
):
"""Initializes a MultiGPULearnerThread instance.
Args:
local_worker (RolloutWorker): Local RolloutWorker holding
policies this thread will call `load_batch_into_buffer` and
`learn_on_loaded_batch` on.
num_gpus (int): Number of GPUs to use for data-parallel SGD.
train_batch_size (int): Size of batches (minibatches if
`num_sgd_iter` > 1) to learn on.
num_multi_gpu_tower_stacks (int): Number of buffers to parallelly
load data into on one device. Each buffer is of size of
`train_batch_size` and hence increases GPU memory usage
accordingly.
num_sgd_iter (int): Number of passes to learn on per train batch
(minibatch if `num_sgd_iter` > 1).
learner_queue_size (int): Max size of queue of inbound
train batches to this thread.
num_data_load_threads (int): Number of threads to use to load
data into GPU memory in parallel.
"""
# Deprecated: No need to specify as we don't need the actual
# minibatch-buffer anyways.
if minibatch_buffer_size:
deprecation_warning(
old="MultiGPULearnerThread.minibatch_buffer_size",
error=False,
)
super().__init__(
local_worker=local_worker,
minibatch_buffer_size=0,
num_sgd_iter=num_sgd_iter,
learner_queue_size=learner_queue_size,
learner_queue_timeout=learner_queue_timeout,
)
# Delete reference to parent's minibatch_buffer, which is not needed.
# Instead, in multi-GPU mode, we pull tower stack indices from the
# `self.ready_tower_stacks_buffer` buffer, whose size is exactly
# `num_multi_gpu_tower_stacks`.
self.minibatch_buffer = None
self.train_batch_size = train_batch_size
self.policy_map = self.local_worker.policy_map
self.devices = next(iter(self.policy_map.values())).devices
logger.info("MultiGPULearnerThread devices {}".format(self.devices))
assert self.train_batch_size % len(self.devices) == 0
assert self.train_batch_size >= len(self.devices),\
"batch too small"
self.tower_stack_indices = list(range(num_multi_gpu_tower_stacks))
# Two queues for tower stacks:
# a) Those that are loaded with data ("ready")
# b) Those that are ready to be loaded with new data ("idle").
self.idle_tower_stacks = queue.Queue()
self.ready_tower_stacks = queue.Queue()
# In the beginning, all stacks are idle (no loading has taken place
# yet).
for idx in self.tower_stack_indices:
self.idle_tower_stacks.put(idx)
# Start n threads that are responsible for loading data into the
# different (idle) stacks.
for i in range(num_data_load_threads):
self.loader_thread = _MultiGPULoaderThread(
self, share_stats=(i == 0))
self.loader_thread.start()
# Create a buffer that holds stack indices that are "ready"
# (loaded with data). Those are stacks that we can call
# "learn_on_loaded_batch" on.
self.ready_tower_stacks_buffer = MinibatchBuffer(
self.ready_tower_stacks, num_multi_gpu_tower_stacks,
learner_queue_timeout, num_sgd_iter)
@override(LearnerThread)
def step(self) -> None:
assert self.loader_thread.is_alive()
with self.load_wait_timer:
buffer_idx, released = self.ready_tower_stacks_buffer.get()
get_num_samples_loaded_into_buffer = 0
with self.grad_timer:
# Use LearnerInfoBuilder as a unified way to build the final
# results dict from `learn_on_loaded_batch` call(s).
# This makes sure results dicts always have the same structure
# no matter the setup (multi-GPU, multi-agent, minibatch SGD,
# tf vs torch).
learner_info_builder = LearnerInfoBuilder(
num_devices=len(self.devices))
for pid in self.policy_map.keys():
# Not a policy-to-train.
if pid not in self.local_worker.policies_to_train:
continue
policy = self.policy_map[pid]
default_policy_results = policy.learn_on_loaded_batch(
offset=0, buffer_index=buffer_idx)
learner_info_builder.add_learn_on_batch_results(
default_policy_results)
self.weights_updated = True
get_num_samples_loaded_into_buffer += \
policy.get_num_samples_loaded_into_buffer(buffer_idx)
self.learner_info = learner_info_builder.finalize()
learner_stats = {
pid: self.learner_info[pid][LEARNER_STATS_KEY]
for pid in self.learner_info.keys()
}
if released:
self.idle_tower_stacks.put(buffer_idx)
self.outqueue.put((get_num_samples_loaded_into_buffer, learner_stats))
self.learner_queue_size.push(self.inqueue.qsize())
class _MultiGPULoaderThread(threading.Thread):
def __init__(self, multi_gpu_learner_thread: MultiGPULearnerThread,
share_stats: bool):
threading.Thread.__init__(self)
self.multi_gpu_learner_thread = multi_gpu_learner_thread
self.daemon = True
if share_stats:
self.queue_timer = multi_gpu_learner_thread.queue_timer
self.load_timer = multi_gpu_learner_thread.load_timer
else:
self.queue_timer = TimerStat()
self.load_timer = TimerStat()
def run(self) -> None:
while True:
self._step()
def _step(self) -> None:
s = self.multi_gpu_learner_thread
policy_map = s.policy_map
# Get a new batch from the data (inqueue).
with self.queue_timer:
batch = s.inqueue.get()
# Get next idle stack for loading.
buffer_idx = s.idle_tower_stacks.get()
# Load the batch into the idle stack.
with self.load_timer:
for pid in policy_map.keys():
if pid not in s.local_worker.policies_to_train:
continue
policy = policy_map[pid]
policy.load_batch_into_buffer(
batch=batch if isinstance(batch, SampleBatch) else
batch.policy_batches[pid],
buffer_index=buffer_idx)
# Tag just-loaded stack as "ready".
s.ready_tower_stacks.put(buffer_idx)