ray/dashboard/modules/reporter/reporter_head.py

172 lines
6.6 KiB
Python

import json
import logging
import yaml
import os
import aiohttp.web
import ray
import ray.dashboard.utils as dashboard_utils
import ray.dashboard.optional_utils as dashboard_optional_utils
import ray.experimental.internal_kv as internal_kv
import ray._private.services
import ray._private.utils
from ray.ray_constants import (
GLOBAL_GRPC_OPTIONS,
DEBUG_AUTOSCALING_STATUS,
DEBUG_AUTOSCALING_STATUS_LEGACY,
DEBUG_AUTOSCALING_ERROR,
)
from ray.core.generated import reporter_pb2
from ray.core.generated import reporter_pb2_grpc
from ray._private.gcs_pubsub import GcsAioResourceUsageSubscriber
from ray._private.metrics_agent import PrometheusServiceDiscoveryWriter
from ray.dashboard.datacenter import DataSource
logger = logging.getLogger(__name__)
routes = dashboard_optional_utils.ClassMethodRouteTable
class ReportHead(dashboard_utils.DashboardHeadModule):
def __init__(self, dashboard_head):
super().__init__(dashboard_head)
self._stubs = {}
self._ray_config = None
DataSource.agents.signal.append(self._update_stubs)
# TODO(fyrestone): Avoid using ray.state in dashboard, it's not
# asynchronous and will lead to low performance. ray disconnect()
# will be hang when the ray.state is connected and the GCS is exit.
# Please refer to: https://github.com/ray-project/ray/issues/16328
assert dashboard_head.gcs_address or dashboard_head.redis_address
gcs_address = dashboard_head.gcs_address
temp_dir = dashboard_head.temp_dir
self.service_discovery = PrometheusServiceDiscoveryWriter(gcs_address, temp_dir)
async def _update_stubs(self, change):
if change.old:
node_id, port = change.old
ip = DataSource.node_id_to_ip[node_id]
self._stubs.pop(ip)
if change.new:
node_id, ports = change.new
ip = DataSource.node_id_to_ip[node_id]
options = GLOBAL_GRPC_OPTIONS
channel = ray._private.utils.init_grpc_channel(
f"{ip}:{ports[1]}", options=options, asynchronous=True
)
stub = reporter_pb2_grpc.ReporterServiceStub(channel)
self._stubs[ip] = stub
@routes.get("/api/launch_profiling")
async def launch_profiling(self, req) -> aiohttp.web.Response:
ip = req.query["ip"]
pid = int(req.query["pid"])
duration = int(req.query["duration"])
reporter_stub = self._stubs[ip]
reply = await reporter_stub.GetProfilingStats(
reporter_pb2.GetProfilingStatsRequest(pid=pid, duration=duration)
)
profiling_info = (
json.loads(reply.profiling_stats)
if reply.profiling_stats
else reply.std_out
)
return dashboard_optional_utils.rest_response(
success=True, message="Profiling success.", profiling_info=profiling_info
)
@routes.get("/api/ray_config")
async def get_ray_config(self, req) -> aiohttp.web.Response:
if self._ray_config is None:
try:
config_path = os.path.expanduser("~/ray_bootstrap_config.yaml")
with open(config_path) as f:
cfg = yaml.safe_load(f)
except yaml.YAMLError:
return dashboard_optional_utils.rest_response(
success=False,
message=f"No config found at {config_path}.",
)
except FileNotFoundError:
return dashboard_optional_utils.rest_response(
success=False, message="Invalid config, could not load YAML."
)
payload = {
"min_workers": cfg.get("min_workers", "unspecified"),
"max_workers": cfg.get("max_workers", "unspecified"),
}
try:
payload["head_type"] = cfg["head_node"]["InstanceType"]
except KeyError:
payload["head_type"] = "unknown"
try:
payload["worker_type"] = cfg["worker_nodes"]["InstanceType"]
except KeyError:
payload["worker_type"] = "unknown"
self._ray_config = payload
return dashboard_optional_utils.rest_response(
success=True,
message="Fetched ray config.",
**self._ray_config,
)
@routes.get("/api/cluster_status")
async def get_cluster_status(self, req):
"""Returns status information about the cluster.
Currently contains two fields:
autoscaling_status (str)-- a status message from the autoscaler.
autoscaling_error (str)-- an error message from the autoscaler if
anything has gone wrong during autoscaling.
These fields are both read from the GCS, it's expected that the
autoscaler writes them there.
"""
assert ray.experimental.internal_kv._internal_kv_initialized()
legacy_status = internal_kv._internal_kv_get(DEBUG_AUTOSCALING_STATUS_LEGACY)
formatted_status_string = internal_kv._internal_kv_get(DEBUG_AUTOSCALING_STATUS)
formatted_status = (
json.loads(formatted_status_string.decode())
if formatted_status_string
else {}
)
error = internal_kv._internal_kv_get(DEBUG_AUTOSCALING_ERROR)
return dashboard_optional_utils.rest_response(
success=True,
message="Got cluster status.",
autoscaling_status=legacy_status.decode() if legacy_status else None,
autoscaling_error=error.decode() if error else None,
cluster_status=formatted_status if formatted_status else None,
)
async def run(self, server):
# Need daemon True to avoid dashboard hangs at exit.
self.service_discovery.daemon = True
self.service_discovery.start()
gcs_addr = self._dashboard_head.gcs_address
subscriber = GcsAioResourceUsageSubscriber(gcs_addr)
await subscriber.subscribe()
while True:
try:
# The key is b'RAY_REPORTER:{node id hex}',
# e.g. b'RAY_REPORTER:2b4fbd...'
key, data = await subscriber.poll()
if key is None:
continue
data = json.loads(data)
node_id = key.split(":")[-1]
DataSource.node_physical_stats[node_id] = data
except Exception:
logger.exception(
"Error receiving node physical stats from reporter agent."
)
@staticmethod
def is_minimal_module():
return False