ray/release/rllib_tests/learning_tests/yaml_files/slateq-interest-evolution-recsim-env.yaml

41 lines
1.5 KiB
YAML

slateq-interest-evolution-recsim-env:
env: ray.rllib.examples.env.recommender_system_envs_with_recsim.InterestEvolutionRecSimEnv
run: SlateQ
pass_criteria:
episode_reward_mean: 162.0
timesteps_total: 300000
stop:
time_total_s: 7200
config:
# increase num sampling workers for faster sampling.
num_workers: 12
# RLlib/RecSim wrapper specific settings:
env_config:
# Env class specified above takes one `config` arg in its c'tor:
config:
# Each step, sample `num_candidates` documents using the env-internal
# document sampler model (a logic that creates n documents to select
# the slate from).
resample_documents: true
num_candidates: 50
# How many documents to recommend (out of `num_candidates`) each
# timestep?
slate_size: 2
# Should the action space be purely Discrete? Useful for algos that
# don't support MultiDiscrete (e.g. DQN or Bandits).
# SlateQ handles MultiDiscrete action spaces.
convert_to_discrete_action_space: false
seed: 0
num_gpus: 1
exploration_config:
warmup_timesteps: 20000
epsilon_timesteps: 70000
replay_buffer_config:
capacity: 500000
lr: 0.00025
metrics_num_episodes_for_smoothing: 200