ray/rllib/optimizers/tests/test_optimizers.py
Eric Liang baadbdf8d4
[rllib] Execute PPO using training workflow (#8206)
* wip

* add kl

* kl

* works now

* doc update

* reorg

* add ddppo

* add stats

* fix fetch

* comment

* fix learner stat regression

* test fixes

* fix test
2020-04-30 01:18:09 -07:00

281 lines
9.9 KiB
Python

import gym
import numpy as np
import time
import unittest
import ray
from ray.rllib.agents.ppo import PPOTrainer
from ray.rllib.agents.ppo.ppo_tf_policy import PPOTFPolicy
from ray.rllib.evaluation.rollout_worker import RolloutWorker
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.optimizers import AsyncGradientsOptimizer, AsyncSamplesOptimizer
from ray.rllib.optimizers.aso_tree_aggregator import TreeAggregator
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.tests.mock_worker import _MockWorker
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
class LRScheduleTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init(num_cpus=2)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_basic(self):
ppo = PPOTrainer(
env="CartPole-v0",
config={"lr_schedule": [[0, 1e-5], [1000, 0.0]]})
for _ in range(10):
result = ppo.train()
assert result["episode_reward_mean"] < 100, "should not have learned"
class AsyncOptimizerTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init(num_cpus=4, object_store_memory=1000 * 1024 * 1024)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_basic(self):
local = _MockWorker()
remotes = ray.remote(_MockWorker)
remote_workers = [remotes.remote() for i in range(5)]
workers = WorkerSet._from_existing(local, remote_workers)
test_optimizer = AsyncGradientsOptimizer(workers, grads_per_step=10)
test_optimizer.step()
self.assertTrue(all(local.get_weights() == 0))
class PPOCollectTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init(num_cpus=4, object_store_memory=1000 * 1024 * 1024)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_ppo_sample_waste(self):
# Check we at least collect the initial wave of samples
ppo = PPOTrainer(
env="CartPole-v0",
config={
"rollout_fragment_length": 200,
"train_batch_size": 128,
"num_workers": 3,
})
result = ppo.train()
self.assertEqual(result["info"]["num_steps_sampled"], 600)
ppo.stop()
# Check we collect at least the specified amount of samples
ppo = PPOTrainer(
env="CartPole-v0",
config={
"rollout_fragment_length": 200,
"train_batch_size": 900,
"num_workers": 3,
})
result = ppo.train()
self.assertEqual(result["info"]["num_steps_sampled"], 1200)
ppo.stop()
# Check in vectorized mode
ppo = PPOTrainer(
env="CartPole-v0",
config={
"rollout_fragment_length": 200,
"num_envs_per_worker": 2,
"train_batch_size": 900,
"num_workers": 3,
})
result = ppo.train()
self.assertEqual(result["info"]["num_steps_sampled"], 1200)
ppo.stop()
class SampleBatchTest(unittest.TestCase):
def test_concat(self):
b1 = SampleBatch({"a": np.array([1, 2, 3]), "b": np.array([4, 5, 6])})
b2 = SampleBatch({"a": np.array([1]), "b": np.array([4])})
b3 = SampleBatch({"a": np.array([1]), "b": np.array([5])})
b12 = b1.concat(b2)
self.assertEqual(b12["a"].tolist(), [1, 2, 3, 1])
self.assertEqual(b12["b"].tolist(), [4, 5, 6, 4])
b = SampleBatch.concat_samples([b1, b2, b3])
self.assertEqual(b["a"].tolist(), [1, 2, 3, 1, 1])
self.assertEqual(b["b"].tolist(), [4, 5, 6, 4, 5])
class AsyncSamplesOptimizerTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init(num_cpus=8, object_store_memory=1000 * 1024 * 1024)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_simple(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
optimizer = AsyncSamplesOptimizer(workers)
self._wait_for(optimizer, 1000, 1000)
def test_multi_gpu(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
optimizer = AsyncSamplesOptimizer(workers, num_gpus=1, _fake_gpus=True)
self._wait_for(optimizer, 1000, 1000)
def test_multi_gpu_parallel_load(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
optimizer = AsyncSamplesOptimizer(
workers, num_gpus=1, num_data_loader_buffers=1, _fake_gpus=True)
self._wait_for(optimizer, 1000, 1000)
def test_multiple_passes(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
optimizer = AsyncSamplesOptimizer(
workers,
minibatch_buffer_size=10,
num_sgd_iter=10,
rollout_fragment_length=10,
train_batch_size=50)
self._wait_for(optimizer, 1000, 10000)
self.assertLess(optimizer.stats()["num_steps_sampled"], 5000)
self.assertGreater(optimizer.stats()["num_steps_trained"], 8000)
def test_replay(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
optimizer = AsyncSamplesOptimizer(
workers,
replay_buffer_num_slots=100,
replay_proportion=10,
rollout_fragment_length=10,
train_batch_size=10,
)
self._wait_for(optimizer, 1000, 1000)
stats = optimizer.stats()
self.assertLess(stats["num_steps_sampled"], 5000)
replay_ratio = stats["num_steps_replayed"] / stats["num_steps_sampled"]
self.assertGreater(replay_ratio, 0.7)
self.assertLess(stats["num_steps_trained"], stats["num_steps_sampled"])
def test_replay_and_multiple_passes(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
optimizer = AsyncSamplesOptimizer(
workers,
minibatch_buffer_size=10,
num_sgd_iter=10,
replay_buffer_num_slots=100,
replay_proportion=10,
rollout_fragment_length=10,
train_batch_size=10)
self._wait_for(optimizer, 1000, 1000)
stats = optimizer.stats()
print(stats)
self.assertLess(stats["num_steps_sampled"], 5000)
replay_ratio = stats["num_steps_replayed"] / stats["num_steps_sampled"]
self.assertGreater(replay_ratio, 0.7)
def test_multi_tier_aggregation_bad_conf(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
aggregators = TreeAggregator.precreate_aggregators(4)
optimizer = AsyncSamplesOptimizer(workers, num_aggregation_workers=4)
self.assertRaises(ValueError,
lambda: optimizer.aggregator.init(aggregators))
def test_multi_tier_aggregation(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
aggregators = TreeAggregator.precreate_aggregators(1)
optimizer = AsyncSamplesOptimizer(workers, num_aggregation_workers=1)
optimizer.aggregator.init(aggregators)
self._wait_for(optimizer, 1000, 1000)
def test_reject_bad_configs(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
self.assertRaises(
ValueError, lambda: AsyncSamplesOptimizer(
local, remotes,
num_data_loader_buffers=2, minibatch_buffer_size=4))
optimizer = AsyncSamplesOptimizer(
workers,
num_gpus=1,
train_batch_size=100,
rollout_fragment_length=50,
_fake_gpus=True)
self._wait_for(optimizer, 1000, 1000)
optimizer = AsyncSamplesOptimizer(
workers,
num_gpus=1,
train_batch_size=100,
rollout_fragment_length=25,
_fake_gpus=True)
self._wait_for(optimizer, 1000, 1000)
optimizer = AsyncSamplesOptimizer(
workers,
num_gpus=1,
train_batch_size=100,
rollout_fragment_length=74,
_fake_gpus=True)
self._wait_for(optimizer, 1000, 1000)
def test_learner_queue_timeout(self):
local, remotes = self._make_envs()
workers = WorkerSet._from_existing(local, remotes)
optimizer = AsyncSamplesOptimizer(
workers,
rollout_fragment_length=1000,
train_batch_size=1000,
learner_queue_timeout=1)
self.assertRaises(AssertionError,
lambda: self._wait_for(optimizer, 1000, 1000))
def _make_envs(self):
def make_sess():
return tf.Session(config=tf.ConfigProto(device_count={"CPU": 2}))
local = RolloutWorker(
env_creator=lambda _: gym.make("CartPole-v0"),
policy=PPOTFPolicy,
tf_session_creator=make_sess)
remotes = [
RolloutWorker.as_remote().remote(
env_creator=lambda _: gym.make("CartPole-v0"),
policy=PPOTFPolicy,
tf_session_creator=make_sess)
]
return local, remotes
def _wait_for(self, optimizer, num_steps_sampled, num_steps_trained):
start = time.time()
while time.time() - start < 30:
optimizer.step()
if optimizer.num_steps_sampled > num_steps_sampled and \
optimizer.num_steps_trained > num_steps_trained:
print("OK", optimizer.stats())
return
raise AssertionError("TIMED OUT", optimizer.stats())
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))