mirror of
https://github.com/vale981/ray
synced 2025-03-10 13:26:39 -04:00

- This PR completes any previously missing PyTorch Model counterparts to TFModels in examples/models. - It also makes sure, all example scripts in the rllib/examples folder are tested for both frameworks and learn the given task (this is often currently not checked) using a --as-test flag in connection with a --stop-reward.
58 lines
1.7 KiB
Python
58 lines
1.7 KiB
Python
"""A very simple contextual bandit example with 3 arms."""
|
|
|
|
import argparse
|
|
import gym
|
|
from gym.spaces import Discrete, Box
|
|
import numpy as np
|
|
import random
|
|
|
|
from ray import tune
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--run", type=str, default="contrib/LinUCB")
|
|
parser.add_argument("--as-test", action="store_true")
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
parser.add_argument("--stop-reward", type=float, default=10.0)
|
|
|
|
|
|
class SimpleContextualBandit(gym.Env):
|
|
def __init__(self, config=None):
|
|
self.action_space = Discrete(3)
|
|
self.observation_space = Box(low=-1., high=1., shape=(2, ))
|
|
self.cur_context = None
|
|
|
|
def reset(self):
|
|
self.cur_context = random.choice([-1., 1.])
|
|
return np.array([self.cur_context, -self.cur_context])
|
|
|
|
def step(self, action):
|
|
rewards_for_context = {
|
|
-1.: [-10, 0, 10],
|
|
1.: [10, 0, -10],
|
|
}
|
|
reward = rewards_for_context[self.cur_context][action]
|
|
return (np.array([-self.cur_context, self.cur_context]), reward, True,
|
|
{
|
|
"regret": 10 - reward
|
|
})
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
config = {
|
|
"env": SimpleContextualBandit,
|
|
}
|
|
|
|
results = tune.run(args.run, config=config, stop=stop)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|