ray/examples/resnet/resnet_main.py
Wapaul1 c26c7553bc Resnet Example Uses tf.Datasets now (#960)
Change Resnet example to use tf.Datasets instead of queues.
2017-09-20 14:14:04 -07:00

239 lines
9.7 KiB
Python

"""ResNet training script, with some code from
https://github.com/tensorflow/models/tree/master/resnet.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import numpy as np
import ray
import tensorflow as tf
import cifar_input
import resnet_model
# Tensorflow must be at least version 1.2.0 for the example to work.
tf_major = int(tf.__version__.split(".")[0])
tf_minor = int(tf.__version__.split(".")[1])
if (tf_major < 1) or (tf_major == 1 and tf_minor < 2):
raise Exception("Your Tensorflow version is less than 1.2.0. Please "
"update Tensorflow to the latest version.")
parser = argparse.ArgumentParser(description="Run the ResNet example.")
parser.add_argument("--dataset", default="cifar10", type=str,
help="Dataset to use: cifar10 or cifar100.")
parser.add_argument("--train_data_path",
default="cifar-10-batches-bin/data_batch*", type=str,
help="Data path for the training data.")
parser.add_argument("--eval_data_path",
default="cifar-10-batches-bin/test_batch.bin", type=str,
help="Data path for the testing data.")
parser.add_argument("--eval_dir", default="/tmp/resnet-model/eval", type=str,
help="Data path for the tensorboard logs.")
parser.add_argument("--eval_batch_count", default=50, type=int,
help="Number of batches to evaluate over.")
parser.add_argument("--num_gpus", default=0, type=int,
help="Number of GPUs to use for training.")
parser.add_argument("--redis-address", default=None, type=str,
help="The Redis address of the cluster.")
FLAGS = parser.parse_args()
# Determines if the actors require a gpu or not.
use_gpu = 1 if int(FLAGS.num_gpus) > 0 else 0
@ray.remote
def get_data(path, size, dataset):
# Retrieves all preprocessed images and labels using a tensorflow queue.
# This only uses the cpu.
os.environ["CUDA_VISIBLE_DEVICES"] = ""
with tf.device("/cpu:0"):
dataset = cifar_input.build_data(path, size, dataset)
sess = tf.Session()
images, labels = sess.run(dataset)
sess.close()
return images, labels
@ray.remote(num_gpus=use_gpu)
class ResNetTrainActor(object):
def __init__(self, data, dataset, num_gpus):
if num_gpus > 0:
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
[str(i) for i in ray.get_gpu_ids()])
hps = resnet_model.HParams(
batch_size=128,
num_classes=100 if dataset == "cifar100" else 10,
min_lrn_rate=0.0001,
lrn_rate=0.1,
num_residual_units=5,
use_bottleneck=False,
weight_decay_rate=0.0002,
relu_leakiness=0.1,
optimizer="mom",
num_gpus=num_gpus)
# We seed each actor differently so that each actor operates on a
# different subset of data.
if num_gpus > 0:
tf.set_random_seed(ray.get_gpu_ids()[0] + 1)
else:
# Only a single actor in this case.
tf.set_random_seed(1)
with tf.device("/gpu:0" if num_gpus > 0 else "/cpu:0"):
# Build the model.
images, labels = cifar_input.build_input(data,
hps.batch_size, dataset,
False)
self.model = resnet_model.ResNet(hps, images, labels, "train")
self.model.build_graph()
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
self.model.variables.set_session(sess)
init = tf.global_variables_initializer()
sess.run(init)
self.steps = 10
def compute_steps(self, weights):
# This method sets the weights in the network, trains the network
# self.steps times, and returns the new weights.
self.model.variables.set_weights(weights)
for i in range(self.steps):
self.model.variables.sess.run(self.model.train_op)
return self.model.variables.get_weights()
def get_weights(self):
# Note that the driver cannot directly access fields of the class,
# so helper methods must be created.
return self.model.variables.get_weights()
@ray.remote
class ResNetTestActor(object):
def __init__(self, data, dataset, eval_batch_count, eval_dir):
os.environ["CUDA_VISIBLE_DEVICES"] = ""
hps = resnet_model.HParams(
batch_size=100,
num_classes=100 if dataset == "cifar100" else 10,
min_lrn_rate=0.0001,
lrn_rate=0.1,
num_residual_units=5,
use_bottleneck=False,
weight_decay_rate=0.0002,
relu_leakiness=0.1,
optimizer="mom",
num_gpus=0)
with tf.device("/cpu:0"):
# Builds the testing network.
images, labels = cifar_input.build_input(data,
hps.batch_size, dataset,
False)
self.model = resnet_model.ResNet(hps, images, labels, "eval")
self.model.build_graph()
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
self.model.variables.set_session(sess)
init = tf.global_variables_initializer()
sess.run(init)
# Initializing parameters for tensorboard.
self.best_precision = 0.0
self.eval_batch_count = eval_batch_count
self.summary_writer = tf.summary.FileWriter(eval_dir, sess.graph)
# The IP address where tensorboard logs will be on.
self.ip_addr = ray.services.get_node_ip_address()
def accuracy(self, weights, train_step):
# Sets the weights, computes the accuracy and other metrics
# over eval_batches, and outputs to tensorboard.
self.model.variables.set_weights(weights)
total_prediction, correct_prediction = 0, 0
model = self.model
sess = self.model.variables.sess
for _ in range(self.eval_batch_count):
summaries, loss, predictions, truth = sess.run(
[model.summaries, model.cost, model.predictions,
model.labels])
truth = np.argmax(truth, axis=1)
predictions = np.argmax(predictions, axis=1)
correct_prediction += np.sum(truth == predictions)
total_prediction += predictions.shape[0]
precision = 1.0 * correct_prediction / total_prediction
self.best_precision = max(precision, self.best_precision)
precision_summ = tf.Summary()
precision_summ.value.add(
tag="Precision", simple_value=precision)
self.summary_writer.add_summary(precision_summ, train_step)
best_precision_summ = tf.Summary()
best_precision_summ.value.add(
tag="Best Precision", simple_value=self.best_precision)
self.summary_writer.add_summary(best_precision_summ, train_step)
self.summary_writer.add_summary(summaries, train_step)
tf.logging.info("loss: %.3f, precision: %.3f, best precision: %.3f" %
(loss, precision, self.best_precision))
self.summary_writer.flush()
return precision
def get_ip_addr(self):
# As above, a helper method must be created to access the field from
# the driver.
return self.ip_addr
def train():
num_gpus = FLAGS.num_gpus
if FLAGS.redis_address is None:
ray.init(num_gpus=num_gpus, redirect_output=True)
else:
ray.init(redis_address=FLAGS.redis_address)
train_data = get_data.remote(FLAGS.train_data_path, 50000, FLAGS.dataset)
test_data = get_data.remote(FLAGS.eval_data_path, 10000, FLAGS.dataset)
# Creates an actor for each gpu, or one if only using the cpu. Each actor
# has access to the dataset.
if FLAGS.num_gpus > 0:
train_actors = [ResNetTrainActor.remote(train_data, FLAGS.dataset,
num_gpus)
for _ in range(num_gpus)]
else:
train_actors = [ResNetTrainActor.remote(train_data, FLAGS.dataset, 0)]
test_actor = ResNetTestActor.remote(test_data, FLAGS.dataset,
FLAGS.eval_batch_count, FLAGS.eval_dir)
print("The log files for tensorboard are stored at ip {}."
.format(ray.get(test_actor.get_ip_addr.remote())))
step = 0
weight_id = train_actors[0].get_weights.remote()
acc_id = test_actor.accuracy.remote(weight_id, step)
# Correction for dividing the weights by the number of gpus.
if num_gpus == 0:
num_gpus = 1
print("Starting training loop. Use Ctrl-C to exit.")
try:
while True:
all_weights = ray.get([actor.compute_steps.remote(weight_id)
for actor in train_actors])
mean_weights = {k: (sum([weights[k] for weights in all_weights]) /
num_gpus)
for k in all_weights[0]}
weight_id = ray.put(mean_weights)
step += 10
if step % 200 == 0:
# Retrieves the previously computed accuracy and launches a new
# testing task with the current weights every 200 steps.
acc = ray.get(acc_id)
acc_id = test_actor.accuracy.remote(weight_id, step)
print("Step {0}: {1:.6f}".format(step - 200, acc))
except KeyboardInterrupt:
pass
if __name__ == "__main__":
train()