ray/release/air_tests/air_benchmarks/workloads/benchmark_util.py
Kai Fricke cf75cf7232
[air] Add AIR distributed training benchmark for Torch FashionMNIST (#26436)
This PR adds a distributed benchmark test for Pytorch MNIST training. It compares training with Ray AIR with training with vanilla PyTorch.

In both cases, the same training loop is used. For Ray AIR, we use a TorchTrainer with 4 CPU workers. For vanilla PyTorch, we upload a training script and kick it off (using Ray tasks) in subprocesses on each node. In both cases, we collect the end to end runtime.

Signed-off-by: Kai Fricke <kai@anyscale.com>
2022-07-13 10:53:24 +01:00

77 lines
1.8 KiB
Python

import os
import subprocess
from pathlib import Path
import ray
from typing import List, Dict, Union
def _schedule_remote_fn_on_node(node_ip: str, remote_fn, *args, **kwargs):
return remote_fn.options(resources={f"node:{node_ip}": 0.01}).remote(
*args,
**kwargs,
)
def _schedule_remote_fn_on_all_nodes(
remote_fn, exclude_head: bool = False, *args, **kwargs
):
head_ip = ray.util.get_node_ip_address()
futures = []
for node in ray.nodes():
if not node["Alive"]:
continue
node_ip = node["NodeManagerAddress"]
if exclude_head and node_ip == head_ip:
continue
future = _schedule_remote_fn_on_node(node_ip, remote_fn, *args, **kwargs)
futures.append(future)
return futures
@ray.remote
def _write(stream: bytes, path: str):
Path(path).parent.mkdir(parents=True, exist_ok=True)
with open(path, "wb") as f:
f.write(stream)
def upload_file_to_all_nodes(path: str):
path = os.path.abspath(path)
with open(path, "rb") as f:
stream = f.read()
futures = _schedule_remote_fn_on_all_nodes(
_write, exclude_head=True, stream=stream, path=path
)
return ray.get(futures)
@ray.remote
def _run_command(cmd: str):
return subprocess.check_call(cmd)
def run_command_on_all_nodes(cmd: List[str]):
futures = _schedule_remote_fn_on_all_nodes(_run_command, cmd=cmd)
return ray.get(futures)
def run_commands_with_resources(
cmds: List[str], resources: Dict[str, Union[float, int]]
):
num_cpus = resources.pop("CPU", 1)
num_gpus = resources.pop("GPU", 0)
futures = []
for cmd in cmds:
future = _run_command.options(
num_cpus=num_cpus, num_gpus=num_gpus, resources=resources
).remote(cmd=cmd)
futures.append(future)
return ray.get(futures)