ray/rllib/examples/env/pendulum_mass.py
Michael Luo cf0894d396
[rllib] MAML Agent (#8862)
* Halfway done with transferring MAML to new Ray

* MAML Beta Out

* Debugging MAML atm

* Distributed Execution

* Pendulum Mass Working

* All experiments complete

* Cleaned up codebase

* Travis CI

* Travis CI

* Tests

* Merged conflicts

* Fixed variance bug conflict

* Comment resolved

* Apply suggestions from code review

fixed test_maml

* Update rllib/agents/maml/tests/test_maml.py

* asdf

* Fix testing

Co-authored-by: Sven Mika <sven@anyscale.io>
2020-06-23 09:48:23 -07:00

28 lines
731 B
Python

import numpy as np
import gym
from gym.envs.classic_control.pendulum import PendulumEnv
class PendulumMassEnv(PendulumEnv, gym.utils.EzPickle):
"""PendulumMassEnv varies the weight of the pendulum
Tasks are defined to be weight uniformly sampled between [0.5,2]
"""
def sample_tasks(self, n_tasks):
# Mass is a random float between 0.5 and 2
return np.random.uniform(low=0.5, high=2.0, size=(n_tasks, ))
def set_task(self, task):
"""
Args:
task: task of the meta-learning environment
"""
self.m = task
def get_task(self):
"""
Returns:
task: task of the meta-learning environment
"""
return self.m