mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00
213 lines
8.5 KiB
Python
213 lines
8.5 KiB
Python
import logging
|
|
|
|
from ray.rllib.agents import with_common_config
|
|
from ray.rllib.agents.ppo.ppo_tf_policy import PPOTFPolicy
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
from ray.rllib.execution.rollout_ops import ParallelRollouts, ConcatBatches, \
|
|
StandardizeFields, SelectExperiences
|
|
from ray.rllib.execution.train_ops import TrainOneStep, TrainTFMultiGPU
|
|
from ray.rllib.execution.metric_ops import StandardMetricsReporting
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
|
|
tf = try_import_tf()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# yapf: disable
|
|
# __sphinx_doc_begin__
|
|
DEFAULT_CONFIG = with_common_config({
|
|
# Should use a critic as a baseline (otherwise don't use value baseline;
|
|
# required for using GAE).
|
|
"use_critic": True,
|
|
# If true, use the Generalized Advantage Estimator (GAE)
|
|
# with a value function, see https://arxiv.org/pdf/1506.02438.pdf.
|
|
"use_gae": True,
|
|
# The GAE(lambda) parameter.
|
|
"lambda": 1.0,
|
|
# Initial coefficient for KL divergence.
|
|
"kl_coeff": 0.2,
|
|
# Size of batches collected from each worker.
|
|
"rollout_fragment_length": 200,
|
|
# Number of timesteps collected for each SGD round. This defines the size
|
|
# of each SGD epoch.
|
|
"train_batch_size": 4000,
|
|
# Total SGD batch size across all devices for SGD. This defines the
|
|
# minibatch size within each epoch.
|
|
"sgd_minibatch_size": 128,
|
|
# Whether to shuffle sequences in the batch when training (recommended).
|
|
"shuffle_sequences": True,
|
|
# Number of SGD iterations in each outer loop (i.e., number of epochs to
|
|
# execute per train batch).
|
|
"num_sgd_iter": 30,
|
|
# Stepsize of SGD.
|
|
"lr": 5e-5,
|
|
# Learning rate schedule.
|
|
"lr_schedule": None,
|
|
# Share layers for value function. If you set this to True, it's important
|
|
# to tune vf_loss_coeff.
|
|
"vf_share_layers": False,
|
|
# Coefficient of the value function loss. IMPORTANT: you must tune this if
|
|
# you set vf_share_layers: True.
|
|
"vf_loss_coeff": 1.0,
|
|
# Coefficient of the entropy regularizer.
|
|
"entropy_coeff": 0.0,
|
|
# Decay schedule for the entropy regularizer.
|
|
"entropy_coeff_schedule": None,
|
|
# PPO clip parameter.
|
|
"clip_param": 0.3,
|
|
# Clip param for the value function. Note that this is sensitive to the
|
|
# scale of the rewards. If your expected V is large, increase this.
|
|
"vf_clip_param": 10.0,
|
|
# If specified, clip the global norm of gradients by this amount.
|
|
"grad_clip": None,
|
|
# Target value for KL divergence.
|
|
"kl_target": 0.01,
|
|
# Whether to rollout "complete_episodes" or "truncate_episodes".
|
|
"batch_mode": "truncate_episodes",
|
|
# Which observation filter to apply to the observation.
|
|
"observation_filter": "NoFilter",
|
|
# Uses the sync samples optimizer instead of the multi-gpu one. This is
|
|
# usually slower, but you might want to try it if you run into issues with
|
|
# the default optimizer.
|
|
"simple_optimizer": False,
|
|
# Whether to fake GPUs (using CPUs).
|
|
# Set this to True for debugging on non-GPU machines (set `num_gpus` > 0).
|
|
"_fake_gpus": False,
|
|
})
|
|
# __sphinx_doc_end__
|
|
# yapf: enable
|
|
|
|
|
|
def warn_about_bad_reward_scales(config, result):
|
|
if result["policy_reward_mean"]:
|
|
return result # Punt on handling multiagent case.
|
|
|
|
# Warn about excessively high VF loss.
|
|
learner_stats = result["info"]["learner"]
|
|
if "default_policy" in learner_stats:
|
|
scaled_vf_loss = (config["vf_loss_coeff"] *
|
|
learner_stats["default_policy"]["vf_loss"])
|
|
policy_loss = learner_stats["default_policy"]["policy_loss"]
|
|
if config["vf_share_layers"] and scaled_vf_loss > 100:
|
|
logger.warning(
|
|
"The magnitude of your value function loss is extremely large "
|
|
"({}) compared to the policy loss ({}). This can prevent the "
|
|
"policy from learning. Consider scaling down the VF loss by "
|
|
"reducing vf_loss_coeff, or disabling vf_share_layers.".format(
|
|
scaled_vf_loss, policy_loss))
|
|
|
|
# Warn about bad clipping configs
|
|
if config["vf_clip_param"] <= 0:
|
|
rew_scale = float("inf")
|
|
else:
|
|
rew_scale = round(
|
|
abs(result["episode_reward_mean"]) / config["vf_clip_param"], 0)
|
|
if rew_scale > 200:
|
|
logger.warning(
|
|
"The magnitude of your environment rewards are more than "
|
|
"{}x the scale of `vf_clip_param`. ".format(rew_scale) +
|
|
"This means that it will take more than "
|
|
"{} iterations for your value ".format(rew_scale) +
|
|
"function to converge. If this is not intended, consider "
|
|
"increasing `vf_clip_param`.")
|
|
|
|
return result
|
|
|
|
|
|
def validate_config(config):
|
|
if config["entropy_coeff"] < 0:
|
|
raise DeprecationWarning("entropy_coeff must be >= 0")
|
|
if isinstance(config["entropy_coeff"], int):
|
|
config["entropy_coeff"] = float(config["entropy_coeff"])
|
|
if config["sgd_minibatch_size"] > config["train_batch_size"]:
|
|
raise ValueError(
|
|
"Minibatch size {} must be <= train batch size {}.".format(
|
|
config["sgd_minibatch_size"], config["train_batch_size"]))
|
|
if config["batch_mode"] == "truncate_episodes" and not config["use_gae"]:
|
|
raise ValueError(
|
|
"Episode truncation is not supported without a value "
|
|
"function. Consider setting batch_mode=complete_episodes.")
|
|
if config["multiagent"]["policies"] and not config["simple_optimizer"]:
|
|
logger.info(
|
|
"In multi-agent mode, policies will be optimized sequentially "
|
|
"by the multi-GPU optimizer. Consider setting "
|
|
"simple_optimizer=True if this doesn't work for you.")
|
|
if config["simple_optimizer"]:
|
|
logger.warning(
|
|
"Using the simple minibatch optimizer. This will significantly "
|
|
"reduce performance, consider simple_optimizer=False.")
|
|
# Multi-gpu not supported for PyTorch and tf-eager.
|
|
elif config["framework"] in ["tfe", "torch"]:
|
|
config["simple_optimizer"] = True
|
|
|
|
|
|
def get_policy_class(config):
|
|
if config["framework"] == "torch":
|
|
from ray.rllib.agents.ppo.ppo_torch_policy import PPOTorchPolicy
|
|
return PPOTorchPolicy
|
|
else:
|
|
return PPOTFPolicy
|
|
|
|
|
|
class UpdateKL:
|
|
"""Callback to update the KL based on optimization info."""
|
|
|
|
def __init__(self, workers):
|
|
self.workers = workers
|
|
|
|
def __call__(self, fetches):
|
|
def update(pi, pi_id):
|
|
assert "kl" not in fetches, (
|
|
"kl should be nested under policy id key", fetches)
|
|
if pi_id in fetches:
|
|
assert "kl" in fetches[pi_id], (fetches, pi_id)
|
|
pi.update_kl(fetches[pi_id]["kl"])
|
|
else:
|
|
logger.warning("No data for {}, not updating kl".format(pi_id))
|
|
|
|
self.workers.local_worker().foreach_trainable_policy(update)
|
|
|
|
|
|
def execution_plan(workers, config):
|
|
rollouts = ParallelRollouts(workers, mode="bulk_sync")
|
|
|
|
# Collect large batches of relevant experiences & standardize.
|
|
rollouts = rollouts.for_each(
|
|
SelectExperiences(workers.trainable_policies()))
|
|
rollouts = rollouts.combine(
|
|
ConcatBatches(min_batch_size=config["train_batch_size"]))
|
|
rollouts = rollouts.for_each(StandardizeFields(["advantages"]))
|
|
|
|
if config["simple_optimizer"]:
|
|
train_op = rollouts.for_each(
|
|
TrainOneStep(
|
|
workers,
|
|
num_sgd_iter=config["num_sgd_iter"],
|
|
sgd_minibatch_size=config["sgd_minibatch_size"]))
|
|
else:
|
|
train_op = rollouts.for_each(
|
|
TrainTFMultiGPU(
|
|
workers,
|
|
sgd_minibatch_size=config["sgd_minibatch_size"],
|
|
num_sgd_iter=config["num_sgd_iter"],
|
|
num_gpus=config["num_gpus"],
|
|
rollout_fragment_length=config["rollout_fragment_length"],
|
|
num_envs_per_worker=config["num_envs_per_worker"],
|
|
train_batch_size=config["train_batch_size"],
|
|
shuffle_sequences=config["shuffle_sequences"],
|
|
_fake_gpus=config["_fake_gpus"]))
|
|
|
|
# Update KL after each round of training.
|
|
train_op = train_op.for_each(lambda t: t[1]).for_each(UpdateKL(workers))
|
|
|
|
return StandardMetricsReporting(train_op, workers, config) \
|
|
.for_each(lambda result: warn_about_bad_reward_scales(config, result))
|
|
|
|
|
|
PPOTrainer = build_trainer(
|
|
name="PPO",
|
|
default_config=DEFAULT_CONFIG,
|
|
default_policy=PPOTFPolicy,
|
|
get_policy_class=get_policy_class,
|
|
execution_plan=execution_plan,
|
|
validate_config=validate_config)
|