ray/rllib/models/tf/layers/multi_head_attention.py

52 lines
1.9 KiB
Python

"""
[1] - Attention Is All You Need - Vaswani, Jones, Shazeer, Parmar,
Uszkoreit, Gomez, Kaiser - Google Brain/Research, U Toronto - 2017.
https://arxiv.org/pdf/1706.03762.pdf
"""
from ray.rllib.utils.framework import try_import_tf
tf1, tf, tfv = try_import_tf()
class MultiHeadAttention(tf.keras.layers.Layer if tf else object):
"""A multi-head attention layer described in [1]."""
def __init__(self, out_dim, num_heads, head_dim, **kwargs):
super().__init__(**kwargs)
# No bias or non-linearity.
self._num_heads = num_heads
self._head_dim = head_dim
self._qkv_layer = tf.keras.layers.Dense(
3 * num_heads * head_dim, use_bias=False)
self._linear_layer = tf.keras.layers.TimeDistributed(
tf.keras.layers.Dense(out_dim, use_bias=False))
def call(self, inputs):
L = tf.shape(inputs)[1] # length of segment
H = self._num_heads # number of attention heads
D = self._head_dim # attention head dimension
qkv = self._qkv_layer(inputs)
queries, keys, values = tf.split(qkv, 3, -1)
queries = queries[:, -L:] # only query based on the segment
queries = tf.reshape(queries, [-1, L, H, D])
keys = tf.reshape(keys, [-1, L, H, D])
values = tf.reshape(values, [-1, L, H, D])
score = tf.einsum("bihd,bjhd->bijh", queries, keys)
score = score / D**0.5
# causal mask of the same length as the sequence
mask = tf.sequence_mask(tf.range(1, L + 1), dtype=score.dtype)
mask = mask[None, :, :, None]
masked_score = score * mask + 1e30 * (mask - 1.)
wmat = tf.nn.softmax(masked_score, axis=2)
out = tf.einsum("bijh,bjhd->bihd", wmat, values)
shape = tf.concat([tf.shape(out)[:2], [H * D]], axis=0)
out = tf.reshape(out, shape)
return self._linear_layer(out)