mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
217 lines
7.5 KiB
Python
217 lines
7.5 KiB
Python
import logging
|
|
from typing import Dict, List, Type, Union
|
|
|
|
import ray
|
|
from ray.rllib.algorithms.ppo.ppo_tf_policy import validate_config
|
|
from ray.rllib.evaluation.postprocessing import (
|
|
Postprocessing,
|
|
compute_gae_for_sample_batch,
|
|
)
|
|
from ray.rllib.models.action_dist import ActionDistribution
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.torch_mixins import (
|
|
EntropyCoeffSchedule,
|
|
KLCoeffMixin,
|
|
LearningRateSchedule,
|
|
ValueNetworkMixin,
|
|
)
|
|
from ray.rllib.policy.torch_policy_v2 import TorchPolicyV2
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.numpy import convert_to_numpy
|
|
from ray.rllib.utils.torch_utils import (
|
|
apply_grad_clipping,
|
|
explained_variance,
|
|
sequence_mask,
|
|
)
|
|
from ray.rllib.utils.typing import TensorType
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class PPOTorchPolicy(
|
|
ValueNetworkMixin,
|
|
LearningRateSchedule,
|
|
EntropyCoeffSchedule,
|
|
KLCoeffMixin,
|
|
TorchPolicyV2,
|
|
):
|
|
"""PyTorch policy class used with PPO."""
|
|
|
|
def __init__(self, observation_space, action_space, config):
|
|
config = dict(ray.rllib.algorithms.ppo.ppo.PPOConfig().to_dict(), **config)
|
|
# TODO: Move into Policy API, if needed at all here. Why not move this into
|
|
# `PPOConfig`?.
|
|
validate_config(config)
|
|
|
|
TorchPolicyV2.__init__(
|
|
self,
|
|
observation_space,
|
|
action_space,
|
|
config,
|
|
max_seq_len=config["model"]["max_seq_len"],
|
|
)
|
|
|
|
ValueNetworkMixin.__init__(self, config)
|
|
LearningRateSchedule.__init__(self, config["lr"], config["lr_schedule"])
|
|
EntropyCoeffSchedule.__init__(
|
|
self, config["entropy_coeff"], config["entropy_coeff_schedule"]
|
|
)
|
|
KLCoeffMixin.__init__(self, config)
|
|
|
|
# TODO: Don't require users to call this manually.
|
|
self._initialize_loss_from_dummy_batch()
|
|
|
|
@override(TorchPolicyV2)
|
|
def loss(
|
|
self,
|
|
model: ModelV2,
|
|
dist_class: Type[ActionDistribution],
|
|
train_batch: SampleBatch,
|
|
) -> Union[TensorType, List[TensorType]]:
|
|
"""Compute loss for Proximal Policy Objective.
|
|
|
|
Args:
|
|
model: The Model to calculate the loss for.
|
|
dist_class: The action distr. class.
|
|
train_batch: The training data.
|
|
|
|
Returns:
|
|
The PPO loss tensor given the input batch.
|
|
"""
|
|
|
|
logits, state = model(train_batch)
|
|
curr_action_dist = dist_class(logits, model)
|
|
|
|
# RNN case: Mask away 0-padded chunks at end of time axis.
|
|
if state:
|
|
B = len(train_batch[SampleBatch.SEQ_LENS])
|
|
max_seq_len = logits.shape[0] // B
|
|
mask = sequence_mask(
|
|
train_batch[SampleBatch.SEQ_LENS],
|
|
max_seq_len,
|
|
time_major=model.is_time_major(),
|
|
)
|
|
mask = torch.reshape(mask, [-1])
|
|
num_valid = torch.sum(mask)
|
|
|
|
def reduce_mean_valid(t):
|
|
return torch.sum(t[mask]) / num_valid
|
|
|
|
# non-RNN case: No masking.
|
|
else:
|
|
mask = None
|
|
reduce_mean_valid = torch.mean
|
|
|
|
prev_action_dist = dist_class(
|
|
train_batch[SampleBatch.ACTION_DIST_INPUTS], model
|
|
)
|
|
|
|
logp_ratio = torch.exp(
|
|
curr_action_dist.logp(train_batch[SampleBatch.ACTIONS])
|
|
- train_batch[SampleBatch.ACTION_LOGP]
|
|
)
|
|
|
|
# Only calculate kl loss if necessary (kl-coeff > 0.0).
|
|
if self.config["kl_coeff"] > 0.0:
|
|
action_kl = prev_action_dist.kl(curr_action_dist)
|
|
mean_kl_loss = reduce_mean_valid(action_kl)
|
|
else:
|
|
mean_kl_loss = torch.tensor(0.0, device=logp_ratio.device)
|
|
|
|
curr_entropy = curr_action_dist.entropy()
|
|
mean_entropy = reduce_mean_valid(curr_entropy)
|
|
|
|
surrogate_loss = torch.min(
|
|
train_batch[Postprocessing.ADVANTAGES] * logp_ratio,
|
|
train_batch[Postprocessing.ADVANTAGES]
|
|
* torch.clamp(
|
|
logp_ratio, 1 - self.config["clip_param"], 1 + self.config["clip_param"]
|
|
),
|
|
)
|
|
mean_policy_loss = reduce_mean_valid(-surrogate_loss)
|
|
|
|
# Compute a value function loss.
|
|
if self.config["use_critic"]:
|
|
value_fn_out = model.value_function()
|
|
vf_loss = torch.pow(
|
|
value_fn_out - train_batch[Postprocessing.VALUE_TARGETS], 2.0
|
|
)
|
|
vf_loss_clipped = torch.clamp(vf_loss, 0, self.config["vf_clip_param"])
|
|
mean_vf_loss = reduce_mean_valid(vf_loss_clipped)
|
|
# Ignore the value function.
|
|
else:
|
|
value_fn_out = 0
|
|
vf_loss_clipped = mean_vf_loss = 0.0
|
|
|
|
total_loss = reduce_mean_valid(
|
|
-surrogate_loss
|
|
+ self.config["vf_loss_coeff"] * vf_loss_clipped
|
|
- self.entropy_coeff * curr_entropy
|
|
)
|
|
|
|
# Add mean_kl_loss (already processed through `reduce_mean_valid`),
|
|
# if necessary.
|
|
if self.config["kl_coeff"] > 0.0:
|
|
total_loss += self.kl_coeff * mean_kl_loss
|
|
|
|
# Store values for stats function in model (tower), such that for
|
|
# multi-GPU, we do not override them during the parallel loss phase.
|
|
model.tower_stats["total_loss"] = total_loss
|
|
model.tower_stats["mean_policy_loss"] = mean_policy_loss
|
|
model.tower_stats["mean_vf_loss"] = mean_vf_loss
|
|
model.tower_stats["vf_explained_var"] = explained_variance(
|
|
train_batch[Postprocessing.VALUE_TARGETS], value_fn_out
|
|
)
|
|
model.tower_stats["mean_entropy"] = mean_entropy
|
|
model.tower_stats["mean_kl_loss"] = mean_kl_loss
|
|
|
|
return total_loss
|
|
|
|
# TODO: Make this an event-style subscription (e.g.:
|
|
# "after_gradients_computed").
|
|
@override(TorchPolicyV2)
|
|
def extra_grad_process(self, local_optimizer, loss):
|
|
return apply_grad_clipping(self, local_optimizer, loss)
|
|
|
|
@override(TorchPolicyV2)
|
|
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
|
|
return convert_to_numpy(
|
|
{
|
|
"cur_kl_coeff": self.kl_coeff,
|
|
"cur_lr": self.cur_lr,
|
|
"total_loss": torch.mean(
|
|
torch.stack(self.get_tower_stats("total_loss"))
|
|
),
|
|
"policy_loss": torch.mean(
|
|
torch.stack(self.get_tower_stats("mean_policy_loss"))
|
|
),
|
|
"vf_loss": torch.mean(
|
|
torch.stack(self.get_tower_stats("mean_vf_loss"))
|
|
),
|
|
"vf_explained_var": torch.mean(
|
|
torch.stack(self.get_tower_stats("vf_explained_var"))
|
|
),
|
|
"kl": torch.mean(torch.stack(self.get_tower_stats("mean_kl_loss"))),
|
|
"entropy": torch.mean(
|
|
torch.stack(self.get_tower_stats("mean_entropy"))
|
|
),
|
|
"entropy_coeff": self.entropy_coeff,
|
|
}
|
|
)
|
|
|
|
@override(TorchPolicyV2)
|
|
def postprocess_trajectory(
|
|
self, sample_batch, other_agent_batches=None, episode=None
|
|
):
|
|
# Do all post-processing always with no_grad().
|
|
# Not using this here will introduce a memory leak
|
|
# in torch (issue #6962).
|
|
# TODO: no_grad still necessary?
|
|
with torch.no_grad():
|
|
return compute_gae_for_sample_batch(
|
|
self, sample_batch, other_agent_batches, episode
|
|
)
|