mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
118 lines
3.7 KiB
Python
118 lines
3.7 KiB
Python
"""Example of creating a custom input api
|
|
|
|
Custom input apis are useful when your data source is in a custom format or
|
|
when it is necessary to use an external data loading mechanism.
|
|
In this example, we train an rl agent on user specified input data.
|
|
Instead of using the built in JsonReader, we will create our own custom input
|
|
api, and show how to pass config arguments to it.
|
|
|
|
To train CQL on the pendulum environment:
|
|
$ python custom_input_api.py --input-files=../tests/data/pendulum/enormous.zip
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.offline import JsonReader, ShuffledInput, IOContext, InputReader
|
|
from ray.tune.registry import register_input
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run",
|
|
type=str,
|
|
default="CQL",
|
|
help="The RLlib-registered algorithm to use.")
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.")
|
|
parser.add_argument("--stop-iters", type=int, default=100)
|
|
parser.add_argument(
|
|
"--input-files",
|
|
type=str,
|
|
default=os.path.join(
|
|
os.path.dirname(os.path.abspath(__file__)),
|
|
"../tests/data/pendulum/small.json"))
|
|
|
|
|
|
class CustomJsonReader(JsonReader):
|
|
"""
|
|
Example custom InputReader implementation (extended from JsonReader).
|
|
|
|
This gets wrapped in ShuffledInput to comply with offline rl algorithms.
|
|
"""
|
|
|
|
def __init__(self, ioctx: IOContext):
|
|
"""
|
|
The constructor must take an IOContext to be used in the input config.
|
|
Args:
|
|
ioctx (IOContext): use this to access the `input_config` arguments.
|
|
"""
|
|
super().__init__(ioctx.input_config["input_files"], ioctx)
|
|
|
|
|
|
def input_creator(ioctx: IOContext) -> InputReader:
|
|
"""
|
|
The input creator method can be used in the input registry or set as the
|
|
config["input"] parameter.
|
|
|
|
Args:
|
|
ioctx (IOContext): use this to access the `input_config` arguments.
|
|
|
|
Returns:
|
|
instance of ShuffledInput to work with some offline rl algorithms
|
|
"""
|
|
return ShuffledInput(CustomJsonReader(ioctx))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
args = parser.parse_args()
|
|
|
|
# make absolute path because relative path looks in result directory
|
|
args.input_files = os.path.abspath(args.input_files)
|
|
|
|
# we register our custom input creator with this convenient function
|
|
register_input("custom_input", input_creator)
|
|
|
|
# config modified from rllib/tuned_examples/cql/pendulum-cql.yaml
|
|
config = {
|
|
"env": "Pendulum-v1",
|
|
# we can either use the tune registry, class path, or direct function
|
|
# to connect our input api.
|
|
"input": "custom_input",
|
|
# "input": "ray.rllib.examples.custom_input_api.CustomJsonReader",
|
|
# "input": input_creator,
|
|
|
|
# this gets passed to the IOContext
|
|
"input_config": {
|
|
"input_files": args.input_files,
|
|
},
|
|
"framework": args.framework,
|
|
"actions_in_input_normalized": True,
|
|
"clip_actions": True,
|
|
"twin_q": True,
|
|
"train_batch_size": 2000,
|
|
"learning_starts": 0,
|
|
"bc_iters": 100,
|
|
"metrics_smoothing_episodes": 5,
|
|
"evaluation_interval": 1,
|
|
"evaluation_num_workers": 2,
|
|
"evaluation_num_episodes": 10,
|
|
"evaluation_parallel_to_training": True,
|
|
"evaluation_config": {
|
|
"input": "sampler",
|
|
"explore": False,
|
|
}
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"evaluation/episode_reward_mean": -600,
|
|
}
|
|
|
|
analysis = tune.run(args.run, config=config, stop=stop, verbose=1)
|
|
info = analysis.results[next(iter(analysis.results))]["info"]
|