ray/doc/source/data/transforming-datasets.rst
Eric Liang f7ae8923f6
[docs] Reorganize the tensor data support docs; general editing (#26952)
Why are these changes needed?
Editing pass over the tensor support docs for clarity:

Make heavy use of tabbed guides to condense the content
Rewrite examples to be more organized around creating vs reading tensors
Use doc_code for testing
2022-08-01 17:31:41 -07:00

313 lines
12 KiB
ReStructuredText

.. _transforming_datasets:
=====================
Transforming Datasets
=====================
Datasets transformations take in datasets and produce new datasets.
For example, *map* is a transformation that applies a user-defined function (UDF)
on each dataset record and returns a new dataset as the result. Datasets
transformations can be composed to express a chain of computations.
.. _transform_datasets_transformations:
---------------
Transformations
---------------
There are two main types of transformations:
* One-to-one: each input block will contribute to only one output
block, such as :meth:`ds.map_batches() <ray.data.Dataset.map_batches>`.
* All-to-all: input blocks can contribute to multiple output blocks,
such as :meth:`ds.random_shuffle() <ray.data.Dataset.random_shuffle>`.
Here is a table listing some common transformations supported by Ray Datasets.
.. list-table:: Common Ray Datasets transformations.
:header-rows: 1
* - Transformation
- Type
- Description
* - :meth:`ds.map_batches() <ray.data.Dataset.map_batches>`
- One-to-one
- Apply a given function to batches of records of this dataset.
* - :meth:`ds.add_column() <ray.data.Dataset.add_column>`
- One-to-one
- Apply a given function to batches of records to create a new column.
* - :meth:`ds.drop_columns() <ray.data.Dataset.add_column>`
- One-to-one
- Drop the given columns from the dataset.
* - :meth:`ds.split() <ray.data.Dataset.split>`
- One-to-one
- | Split the dataset into N disjoint pieces.
* - :meth:`ds.repartition(shuffle=False) <ray.data.Dataset.repartition>`
- One-to-one
- | Repartition the dataset into N blocks, without shuffling the data.
* - :meth:`ds.repartition(shuffle=True) <ray.data.Dataset.repartition>`
- All-to-all
- | Repartition the dataset into N blocks, shuffling the data during repartition.
* - :meth:`ds.random_shuffle() <ray.data.Dataset.random_shuffle>`
- All-to-all
- | Randomly shuffle the elements of this dataset.
* - :meth:`ds.sort() <ray.data.Dataset.sort>`
- All-to-all
- | Sort the dataset by a sortkey.
* - :meth:`ds.groupby() <ray.data.Dataset.groupby>`
- All-to-all
- | Group the dataset by a groupkey.
.. tip::
Datasets also provides the convenience transformation methods :meth:`ds.map() <ray.data.Dataset.map>`,
:meth:`ds.flat_map() <ray.data.Dataset.flat_map>`, and :meth:`ds.filter() <ray.data.Dataset.filter>`,
which are not vectorized (slower than :meth:`ds.map_batches() <ray.data.Dataset.map_batches>`), but
may be useful for development.
The following is an example to make use of those transformation APIs for processing
the Iris dataset.
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __dataset_transformation_begin__
:end-before: __dataset_transformation_end__
.. _transform_datasets_writing_udfs:
------------
Writing UDFs
------------
User-defined functions (UDFs) are routines that apply on one row (e.g.
:meth:`.map() <ray.data.Dataset.map>`) or a batch of rows (e.g.
:meth:`.map_batches() <ray.data.Dataset.map_batches>`) of a dataset. UDFs let you
express your customized business logic in transformations. Here we will focus on
:meth:`.map_batches() <ray.data.Dataset.map_batches>` as it's the primary mapping
API in Datasets.
Here are the basics that you need to know about UDFs:
* A UDF can be either a function, or if using the :ref:`actor compute strategy <transform_datasets_compute_strategy>`, a :ref:`callable class <transform_datasets_callable_classes>`.
* Select the UDF input :ref:`batch format <transform_datasets_batch_formats>` using the ``batch_format`` argument.
* The UDF output type determines the Dataset schema of the transformation result.
.. _transform_datasets_callable_classes:
Callable Class UDFs
===================
When using the actor compute strategy, per-row and per-batch UDFs can also be
*callable classes*, i.e. classes that implement the ``__call__`` magic method. The
constructor of the class can be used for stateful setup, and will be only invoked once
per worker actor.
.. note::
These transformation APIs take the uninstantiated callable class as an argument,
not an instance of the class.
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_callable_classes_udfs_begin__
:end-before: __writing_callable_classes_udfs_end__
.. _transform_datasets_batch_formats:
UDF Input Batch Format
======================
Choose the *batch format* of the data given to UDFs
by setting the ``batch_format`` option of :meth:`.map_batches() <ray.data.Dataset.map_batches>`.
Here is an overview of the available batch formats:
.. tabbed:: "native" (default)
The "native" batch format presents data as follows for each Dataset type:
* **Tabular Datasets**: Each batch will be a
`pandas.DataFrame <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`__.
This may incur a conversion cost if the underlying Dataset block is not
zero-copy convertible from an Arrow table.
* **Tensor Datasets** (single-column): Each batch will be a single
`numpy.ndarray <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html>`__
containing the single tensor column for this batch.
* **Simple Datasets**: Each batch will be a Python list.
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_native_udfs_begin__
:end-before: __writing_native_udfs_end__
.. tabbed:: "pandas"
The ``"pandas"`` batch format presents batches in
`pandas.DataFrame <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`__
format. If converting a simple dataset to Pandas DataFrame batches, a single-column
dataframe with the column ``"__value__"`` will be created.
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_pandas_udfs_begin__
:end-before: __writing_pandas_udfs_end__
.. tabbed:: "pyarrow"
The ``"pyarrow"`` batch format presents batches in
`pyarrow.Table <https://arrow.apache.org/docs/python/generated/pyarrow.Table.html>`__
format. If converting a simple dataset to Arrow Table batches, a single-column table
with the column ``"__value__"`` will be created.
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_arrow_udfs_begin__
:end-before: __writing_arrow_udfs_end__
.. tabbed:: "numpy"
The ``"numpy"`` batch format presents batches in
`numpy.ndarray <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html>`__
format as follows:
* **Tabular Datasets**: Each batch will be a dictionary of NumPy
ndarrays (``Dict[str, np.ndarray]``), with each key-value pair representing a column
in the table.
* **Tensor Datasets** (single-column): Each batch will be a single
`numpy.ndarray <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html>`__
containing the single tensor column for this batch.
* **Simple Datasets**: Each batch will be a single NumPy ndarray, where Datasets will
attempt to convert each list-batch to an ndarray.
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_numpy_udfs_begin__
:end-before: __writing_numpy_udfs_end__
.. tip::
Prefer using vectorized operations on the ``pandas.DataFrame``,
``pyarrow.Table``, and ``numpy.ndarray`` types for better performance. For
example, suppose you want to compute the sum of a column in ``pandas.DataFrame``:
instead of iterating over each row of a batch and summing up values of that column,
use ``df_batch["col_foo"].sum()``.
.. _transform_datasets_batch_output_types:
Batch UDF Output Types
======================
The following output types are allowed for batch UDFs (e.g.,
:meth:`ds.map_batches() <ray.data.Dataset.map_batches>`). The following describes
how they are interpreted to create the transformation result:
.. tabbed:: pd.DataFrame
Returning ``pd.DataFrame`` creates a Tabular dataset as the transformation result:
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_pandas_out_udfs_begin__
:end-before: __writing_pandas_out_udfs_end__
.. tabbed:: pa.Table
Returning ``pa.Table`` creates a Tabular dataset as the transformation result:
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_arrow_out_udfs_begin__
:end-before: __writing_arrow_out_udfs_end__
.. tabbed:: np.ndarray
Returning ``np.ndarray`` creates a single-column Tensor dataset as the transformation result:
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_numpy_out_udfs_begin__
:end-before: __writing_numpy_out_udfs_end__
.. tabbed:: Dict[str, np.ndarray]
Returning ``Dict[str, np.ndarray]`` creates a multi-column Tensor dataset as the transformation result.
If a column tensor is 1-dimensional, then the native Arrow 1D list
type is used; if a column tensor has 2 or more dimensions, then the Dataset
:ref:`tensor extension type <dataset-tensor-extension-api>` to embed these
n-dimensional tensors in the Arrow table.
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_numpy_dict_out_udfs_begin__
:end-before: __writing_numpy_dict_out_udfs_end__
.. tabbed:: list
Returning ``list`` creates a simple Python object dataset as the transformation result:
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_simple_out_udfs_begin__
:end-before: __writing_simple_out_udfs_end__
.. _transform_datasets_row_output_types:
Row UDF Output Types
====================
The following output types are allowed for per-row UDFs (e.g.,
:meth:`ds.map() <ray.data.Dataset.map>`):
.. tabbed:: dict
Returning a ``dict`` of Arrow-compatible data types creates a Tabular dataset
as the transformation result. If any dict values are not Arrow-compatible, then
a simple Python object dataset will be created:
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_dict_out_row_udfs_begin__
:end-before: __writing_dict_out_row_udfs_end__
.. tabbed:: np.ndarray
Returning ``np.ndarray`` creates a single-column Tensor dataset as the transformation result:
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_numpy_out_row_udfs_begin__
:end-before: __writing_numpy_out_row_udfs_end__
.. tabbed:: object
Other return row types will create a simple Python object dataset as the transformation result:
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __writing_simple_out_row_udfs_begin__
:end-before: __writing_simple_out_row_udfs_end__
.. _transform_datasets_compute_strategy:
----------------
Compute Strategy
----------------
Datasets transformations are executed by either :ref:`Ray tasks <ray-remote-functions>`
or :ref:`Ray actors <actor-guide>` across a Ray cluster. By default, Ray tasks are
used (with ``compute="tasks"``). For transformations that require expensive setup,
it's preferrable to use Ray actors, which are stateful and allow setup to be reused
for efficiency. You can specify ``compute=ray.data.ActorPoolStrategy(min, max)`` and
Ray will use an autoscaling actor pool of ``min`` to ``max`` actors to execute your
transforms. For a fixed-size actor pool, specify ``ActorPoolStrategy(n, n)``.
The following is an example of using the Ray tasks and actors compute strategy
for batch inference:
.. literalinclude:: ./doc_code/transforming_datasets.py
:language: python
:start-after: __dataset_compute_strategy_begin__
:end-before: __dataset_compute_strategy_end__