ray/release/benchmarks/distributed/test_many_pgs.py
SangBin Cho 549527687f
Migrate scalability tests (#22901)
This PR migrates scalability tests to the new infra.

I had to copy the benchmarks folder to the release folder to make it work. I will remove some unnecessary files (e.g., benchmark.yaml or wait_for_cluster file) Alternatively we can support a different path than /release from the tool, but I think this way is cleaner. I am open to suggestion though cc @krfricke
2022-03-08 17:22:41 -08:00

95 lines
2.6 KiB
Python

import json
import os
import ray
import ray._private.test_utils as test_utils
from ray.util.placement_group import placement_group, remove_placement_group
import time
import tqdm
if "SMOKE_TEST" in os.environ:
MAX_PLACEMENT_GROUPS = 20
else:
MAX_PLACEMENT_GROUPS = 1000
def test_many_placement_groups():
# @ray.remote(num_cpus=1, resources={"node": 0.02})
@ray.remote
class C1:
def ping(self):
return "pong"
# @ray.remote(num_cpus=1)
@ray.remote
class C2:
def ping(self):
return "pong"
# @ray.remote(resources={"node": 0.02})
@ray.remote
class C3:
def ping(self):
return "pong"
bundle1 = {"node": 0.02, "CPU": 1}
bundle2 = {"CPU": 1}
bundle3 = {"node": 0.02}
pgs = []
for _ in tqdm.trange(MAX_PLACEMENT_GROUPS, desc="Creating pgs"):
pg = placement_group(bundles=[bundle1, bundle2, bundle3])
pgs.append(pg)
for pg in tqdm.tqdm(pgs, desc="Waiting for pgs to be ready"):
ray.get(pg.ready())
actors = []
for pg in tqdm.tqdm(pgs, desc="Scheduling tasks"):
actors.append(C1.options(placement_group=pg).remote())
actors.append(C2.options(placement_group=pg).remote())
actors.append(C3.options(placement_group=pg).remote())
not_ready = [actor.ping.remote() for actor in actors]
for _ in tqdm.trange(len(actors)):
ready, not_ready = ray.wait(not_ready)
assert ray.get(*ready) == "pong"
for pg in tqdm.tqdm(pgs, desc="Cleaning up pgs"):
remove_placement_group(pg)
def no_resource_leaks():
return ray.available_resources() == ray.cluster_resources()
ray.init(address="auto")
test_utils.wait_for_condition(no_resource_leaks)
monitor_actor = test_utils.monitor_memory_usage()
start_time = time.time()
test_many_placement_groups()
end_time = time.time()
ray.get(monitor_actor.stop_run.remote())
used_gb, usage = ray.get(monitor_actor.get_peak_memory_info.remote())
print(f"Peak memory usage: {round(used_gb, 2)}GB")
print(f"Peak memory usage per processes:\n {usage}")
del monitor_actor
test_utils.wait_for_condition(no_resource_leaks)
rate = MAX_PLACEMENT_GROUPS / (end_time - start_time)
print(
f"Success! Started {MAX_PLACEMENT_GROUPS} pgs in "
f"{end_time - start_time}s. ({rate} pgs/s)"
)
if "TEST_OUTPUT_JSON" in os.environ:
out_file = open(os.environ["TEST_OUTPUT_JSON"], "w")
results = {
"pgs_per_second": rate,
"num_pgs": MAX_PLACEMENT_GROUPS,
"time": end_time - start_time,
"success": "1",
"_peak_memory": round(used_gb, 2),
"_peak_process_memory": usage,
}
json.dump(results, out_file)