mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
333 lines
11 KiB
Python
333 lines
11 KiB
Python
"""PyTorch policy class used for R2D2."""
|
|
|
|
from typing import Dict, Tuple
|
|
|
|
import gym
|
|
import ray
|
|
from ray.rllib.algorithms.dqn.dqn_tf_policy import (
|
|
PRIO_WEIGHTS,
|
|
postprocess_nstep_and_prio,
|
|
)
|
|
from ray.rllib.algorithms.dqn.dqn_torch_policy import (
|
|
adam_optimizer,
|
|
build_q_model_and_distribution,
|
|
compute_q_values,
|
|
)
|
|
from ray.rllib.algorithms.r2d2.r2d2_tf_policy import get_distribution_inputs_and_class
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.policy_template import build_policy_class
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.torch_mixins import (
|
|
LearningRateSchedule,
|
|
TargetNetworkMixin,
|
|
)
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.torch_utils import (
|
|
apply_grad_clipping,
|
|
concat_multi_gpu_td_errors,
|
|
FLOAT_MIN,
|
|
huber_loss,
|
|
sequence_mask,
|
|
)
|
|
from ray.rllib.utils.typing import TensorType, AlgorithmConfigDict
|
|
|
|
torch, nn = try_import_torch()
|
|
F = None
|
|
if nn:
|
|
F = nn.functional
|
|
|
|
|
|
def build_r2d2_model_and_distribution(
|
|
policy: Policy,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: AlgorithmConfigDict,
|
|
) -> Tuple[ModelV2, TorchDistributionWrapper]:
|
|
"""Build q_model and target_model for DQN
|
|
|
|
Args:
|
|
policy: The policy, which will use the model for optimization.
|
|
obs_space (gym.spaces.Space): The policy's observation space.
|
|
action_space (gym.spaces.Space): The policy's action space.
|
|
config (AlgorithmConfigDict):
|
|
|
|
Returns:
|
|
(q_model, TorchCategorical)
|
|
Note: The target q model will not be returned, just assigned to
|
|
`policy.target_model`.
|
|
"""
|
|
|
|
# Create the policy's models and action dist class.
|
|
model, distribution_cls = build_q_model_and_distribution(
|
|
policy, obs_space, action_space, config
|
|
)
|
|
|
|
# Assert correct model type by checking the init state to be present.
|
|
# For attention nets: These don't necessarily publish their init state via
|
|
# Model.get_initial_state, but may only use the trajectory view API
|
|
# (view_requirements).
|
|
assert (
|
|
model.get_initial_state() != []
|
|
or model.view_requirements.get("state_in_0") is not None
|
|
), (
|
|
"R2D2 requires its model to be a recurrent one! Try using "
|
|
"`model.use_lstm` or `model.use_attention` in your config "
|
|
"to auto-wrap your model with an LSTM- or attention net."
|
|
)
|
|
|
|
return model, distribution_cls
|
|
|
|
|
|
def r2d2_loss(policy: Policy, model, _, train_batch: SampleBatch) -> TensorType:
|
|
"""Constructs the loss for R2D2TorchPolicy.
|
|
|
|
Args:
|
|
policy: The Policy to calculate the loss for.
|
|
model (ModelV2): The Model to calculate the loss for.
|
|
train_batch: The training data.
|
|
|
|
Returns:
|
|
TensorType: A single loss tensor.
|
|
"""
|
|
target_model = policy.target_models[model]
|
|
config = policy.config
|
|
|
|
# Construct internal state inputs.
|
|
i = 0
|
|
state_batches = []
|
|
while "state_in_{}".format(i) in train_batch:
|
|
state_batches.append(train_batch["state_in_{}".format(i)])
|
|
i += 1
|
|
assert state_batches
|
|
|
|
# Q-network evaluation (at t).
|
|
q, _, _, _ = compute_q_values(
|
|
policy,
|
|
model,
|
|
train_batch,
|
|
state_batches=state_batches,
|
|
seq_lens=train_batch.get(SampleBatch.SEQ_LENS),
|
|
explore=False,
|
|
is_training=True,
|
|
)
|
|
|
|
# Target Q-network evaluation (at t+1).
|
|
q_target, _, _, _ = compute_q_values(
|
|
policy,
|
|
target_model,
|
|
train_batch,
|
|
state_batches=state_batches,
|
|
seq_lens=train_batch.get(SampleBatch.SEQ_LENS),
|
|
explore=False,
|
|
is_training=True,
|
|
)
|
|
|
|
actions = train_batch[SampleBatch.ACTIONS].long()
|
|
dones = train_batch[SampleBatch.DONES].float()
|
|
rewards = train_batch[SampleBatch.REWARDS]
|
|
weights = train_batch[PRIO_WEIGHTS]
|
|
|
|
B = state_batches[0].shape[0]
|
|
T = q.shape[0] // B
|
|
|
|
# Q scores for actions which we know were selected in the given state.
|
|
one_hot_selection = F.one_hot(actions, policy.action_space.n)
|
|
q_selected = torch.sum(
|
|
torch.where(q > FLOAT_MIN, q, torch.tensor(0.0, device=q.device))
|
|
* one_hot_selection,
|
|
1,
|
|
)
|
|
|
|
if config["double_q"]:
|
|
best_actions = torch.argmax(q, dim=1)
|
|
else:
|
|
best_actions = torch.argmax(q_target, dim=1)
|
|
|
|
best_actions_one_hot = F.one_hot(best_actions, policy.action_space.n)
|
|
q_target_best = torch.sum(
|
|
torch.where(
|
|
q_target > FLOAT_MIN, q_target, torch.tensor(0.0, device=q_target.device)
|
|
)
|
|
* best_actions_one_hot,
|
|
dim=1,
|
|
)
|
|
|
|
if config["num_atoms"] > 1:
|
|
raise ValueError("Distributional R2D2 not supported yet!")
|
|
else:
|
|
q_target_best_masked_tp1 = (1.0 - dones) * torch.cat(
|
|
[q_target_best[1:], torch.tensor([0.0], device=q_target_best.device)]
|
|
)
|
|
|
|
if config["use_h_function"]:
|
|
h_inv = h_inverse(q_target_best_masked_tp1, config["h_function_epsilon"])
|
|
target = h_function(
|
|
rewards + config["gamma"] ** config["n_step"] * h_inv,
|
|
config["h_function_epsilon"],
|
|
)
|
|
else:
|
|
target = (
|
|
rewards + config["gamma"] ** config["n_step"] * q_target_best_masked_tp1
|
|
)
|
|
|
|
# Seq-mask all loss-related terms.
|
|
seq_mask = sequence_mask(train_batch[SampleBatch.SEQ_LENS], T)[:, :-1]
|
|
# Mask away also the burn-in sequence at the beginning.
|
|
burn_in = policy.config["replay_buffer_config"]["replay_burn_in"]
|
|
if burn_in > 0 and burn_in < T:
|
|
seq_mask[:, :burn_in] = False
|
|
|
|
num_valid = torch.sum(seq_mask)
|
|
|
|
def reduce_mean_valid(t):
|
|
return torch.sum(t[seq_mask]) / num_valid
|
|
|
|
# Make sure use the correct time indices:
|
|
# Q(t) - [gamma * r + Q^(t+1)]
|
|
q_selected = q_selected.reshape([B, T])[:, :-1]
|
|
td_error = q_selected - target.reshape([B, T])[:, :-1].detach()
|
|
td_error = td_error * seq_mask
|
|
weights = weights.reshape([B, T])[:, :-1]
|
|
total_loss = reduce_mean_valid(weights * huber_loss(td_error))
|
|
|
|
# Store values for stats function in model (tower), such that for
|
|
# multi-GPU, we do not override them during the parallel loss phase.
|
|
model.tower_stats["total_loss"] = total_loss
|
|
model.tower_stats["mean_q"] = reduce_mean_valid(q_selected)
|
|
model.tower_stats["min_q"] = torch.min(q_selected)
|
|
model.tower_stats["max_q"] = torch.max(q_selected)
|
|
model.tower_stats["mean_td_error"] = reduce_mean_valid(td_error)
|
|
# Store per time chunk (b/c we need only one mean
|
|
# prioritized replay weight per stored sequence).
|
|
model.tower_stats["td_error"] = torch.mean(td_error, dim=-1)
|
|
|
|
return total_loss
|
|
|
|
|
|
def h_function(x, epsilon=1.0):
|
|
"""h-function to normalize target Qs, described in the paper [1].
|
|
|
|
h(x) = sign(x) * [sqrt(abs(x) + 1) - 1] + epsilon * x
|
|
|
|
Used in [1] in combination with h_inverse:
|
|
targets = h(r + gamma * h_inverse(Q^))
|
|
"""
|
|
return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1.0) - 1.0) + epsilon * x
|
|
|
|
|
|
def h_inverse(x, epsilon=1.0):
|
|
"""Inverse if the above h-function, described in the paper [1].
|
|
|
|
If x > 0.0:
|
|
h-1(x) = [2eps * x + (2eps + 1) - sqrt(4eps x + (2eps + 1)^2)] /
|
|
(2 * eps^2)
|
|
|
|
If x < 0.0:
|
|
h-1(x) = [2eps * x + (2eps + 1) + sqrt(-4eps x + (2eps + 1)^2)] /
|
|
(2 * eps^2)
|
|
"""
|
|
two_epsilon = epsilon * 2
|
|
if_x_pos = (
|
|
two_epsilon * x
|
|
+ (two_epsilon + 1.0)
|
|
- torch.sqrt(4.0 * epsilon * x + (two_epsilon + 1.0) ** 2)
|
|
) / (2.0 * epsilon ** 2)
|
|
if_x_neg = (
|
|
two_epsilon * x
|
|
- (two_epsilon + 1.0)
|
|
+ torch.sqrt(-4.0 * epsilon * x + (two_epsilon + 1.0) ** 2)
|
|
) / (2.0 * epsilon ** 2)
|
|
return torch.where(x < 0.0, if_x_neg, if_x_pos)
|
|
|
|
|
|
class ComputeTDErrorMixin:
|
|
"""Assign the `compute_td_error` method to the R2D2TorchPolicy
|
|
|
|
This allows us to prioritize on the worker side.
|
|
"""
|
|
|
|
def __init__(self):
|
|
def compute_td_error(
|
|
obs_t, act_t, rew_t, obs_tp1, done_mask, importance_weights
|
|
):
|
|
input_dict = self._lazy_tensor_dict({SampleBatch.CUR_OBS: obs_t})
|
|
input_dict[SampleBatch.ACTIONS] = act_t
|
|
input_dict[SampleBatch.REWARDS] = rew_t
|
|
input_dict[SampleBatch.NEXT_OBS] = obs_tp1
|
|
input_dict[SampleBatch.DONES] = done_mask
|
|
input_dict[PRIO_WEIGHTS] = importance_weights
|
|
|
|
# Do forward pass on loss to update td error attribute
|
|
r2d2_loss(self, self.model, None, input_dict)
|
|
|
|
return self.model.tower_stats["td_error"]
|
|
|
|
self.compute_td_error = compute_td_error
|
|
|
|
|
|
def build_q_stats(policy: Policy, batch: SampleBatch) -> Dict[str, TensorType]:
|
|
|
|
return {
|
|
"cur_lr": policy.cur_lr,
|
|
"total_loss": torch.mean(torch.stack(policy.get_tower_stats("total_loss"))),
|
|
"mean_q": torch.mean(torch.stack(policy.get_tower_stats("mean_q"))),
|
|
"min_q": torch.mean(torch.stack(policy.get_tower_stats("min_q"))),
|
|
"max_q": torch.mean(torch.stack(policy.get_tower_stats("max_q"))),
|
|
"mean_td_error": torch.mean(
|
|
torch.stack(policy.get_tower_stats("mean_td_error"))
|
|
),
|
|
}
|
|
|
|
|
|
def setup_early_mixins(
|
|
policy: Policy, obs_space, action_space, config: AlgorithmConfigDict
|
|
) -> None:
|
|
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
|
|
|
|
|
|
def before_loss_init(
|
|
policy: Policy,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: AlgorithmConfigDict,
|
|
) -> None:
|
|
ComputeTDErrorMixin.__init__(policy)
|
|
TargetNetworkMixin.__init__(policy)
|
|
|
|
|
|
def grad_process_and_td_error_fn(
|
|
policy: Policy, optimizer: "torch.optim.Optimizer", loss: TensorType
|
|
) -> Dict[str, TensorType]:
|
|
# Clip grads if configured.
|
|
return apply_grad_clipping(policy, optimizer, loss)
|
|
|
|
|
|
def extra_action_out_fn(
|
|
policy: Policy, input_dict, state_batches, model, action_dist
|
|
) -> Dict[str, TensorType]:
|
|
return {"q_values": policy.q_values}
|
|
|
|
|
|
R2D2TorchPolicy = build_policy_class(
|
|
name="R2D2TorchPolicy",
|
|
framework="torch",
|
|
loss_fn=r2d2_loss,
|
|
get_default_config=lambda: ray.rllib.algorithms.r2d2.r2d2.R2D2_DEFAULT_CONFIG,
|
|
make_model_and_action_dist=build_r2d2_model_and_distribution,
|
|
action_distribution_fn=get_distribution_inputs_and_class,
|
|
stats_fn=build_q_stats,
|
|
postprocess_fn=postprocess_nstep_and_prio,
|
|
optimizer_fn=adam_optimizer,
|
|
extra_grad_process_fn=grad_process_and_td_error_fn,
|
|
extra_learn_fetches_fn=concat_multi_gpu_td_errors,
|
|
extra_action_out_fn=extra_action_out_fn,
|
|
before_init=setup_early_mixins,
|
|
before_loss_init=before_loss_init,
|
|
mixins=[
|
|
TargetNetworkMixin,
|
|
ComputeTDErrorMixin,
|
|
LearningRateSchedule,
|
|
],
|
|
)
|