ray/rllib/algorithms/r2d2/r2d2_torch_policy.py

333 lines
11 KiB
Python

"""PyTorch policy class used for R2D2."""
from typing import Dict, Tuple
import gym
import ray
from ray.rllib.algorithms.dqn.dqn_tf_policy import (
PRIO_WEIGHTS,
postprocess_nstep_and_prio,
)
from ray.rllib.algorithms.dqn.dqn_torch_policy import (
adam_optimizer,
build_q_model_and_distribution,
compute_q_values,
)
from ray.rllib.algorithms.r2d2.r2d2_tf_policy import get_distribution_inputs_and_class
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_mixins import (
LearningRateSchedule,
TargetNetworkMixin,
)
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.torch_utils import (
apply_grad_clipping,
concat_multi_gpu_td_errors,
FLOAT_MIN,
huber_loss,
sequence_mask,
)
from ray.rllib.utils.typing import TensorType, AlgorithmConfigDict
torch, nn = try_import_torch()
F = None
if nn:
F = nn.functional
def build_r2d2_model_and_distribution(
policy: Policy,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: AlgorithmConfigDict,
) -> Tuple[ModelV2, TorchDistributionWrapper]:
"""Build q_model and target_model for DQN
Args:
policy: The policy, which will use the model for optimization.
obs_space (gym.spaces.Space): The policy's observation space.
action_space (gym.spaces.Space): The policy's action space.
config (AlgorithmConfigDict):
Returns:
(q_model, TorchCategorical)
Note: The target q model will not be returned, just assigned to
`policy.target_model`.
"""
# Create the policy's models and action dist class.
model, distribution_cls = build_q_model_and_distribution(
policy, obs_space, action_space, config
)
# Assert correct model type by checking the init state to be present.
# For attention nets: These don't necessarily publish their init state via
# Model.get_initial_state, but may only use the trajectory view API
# (view_requirements).
assert (
model.get_initial_state() != []
or model.view_requirements.get("state_in_0") is not None
), (
"R2D2 requires its model to be a recurrent one! Try using "
"`model.use_lstm` or `model.use_attention` in your config "
"to auto-wrap your model with an LSTM- or attention net."
)
return model, distribution_cls
def r2d2_loss(policy: Policy, model, _, train_batch: SampleBatch) -> TensorType:
"""Constructs the loss for R2D2TorchPolicy.
Args:
policy: The Policy to calculate the loss for.
model (ModelV2): The Model to calculate the loss for.
train_batch: The training data.
Returns:
TensorType: A single loss tensor.
"""
target_model = policy.target_models[model]
config = policy.config
# Construct internal state inputs.
i = 0
state_batches = []
while "state_in_{}".format(i) in train_batch:
state_batches.append(train_batch["state_in_{}".format(i)])
i += 1
assert state_batches
# Q-network evaluation (at t).
q, _, _, _ = compute_q_values(
policy,
model,
train_batch,
state_batches=state_batches,
seq_lens=train_batch.get(SampleBatch.SEQ_LENS),
explore=False,
is_training=True,
)
# Target Q-network evaluation (at t+1).
q_target, _, _, _ = compute_q_values(
policy,
target_model,
train_batch,
state_batches=state_batches,
seq_lens=train_batch.get(SampleBatch.SEQ_LENS),
explore=False,
is_training=True,
)
actions = train_batch[SampleBatch.ACTIONS].long()
dones = train_batch[SampleBatch.DONES].float()
rewards = train_batch[SampleBatch.REWARDS]
weights = train_batch[PRIO_WEIGHTS]
B = state_batches[0].shape[0]
T = q.shape[0] // B
# Q scores for actions which we know were selected in the given state.
one_hot_selection = F.one_hot(actions, policy.action_space.n)
q_selected = torch.sum(
torch.where(q > FLOAT_MIN, q, torch.tensor(0.0, device=q.device))
* one_hot_selection,
1,
)
if config["double_q"]:
best_actions = torch.argmax(q, dim=1)
else:
best_actions = torch.argmax(q_target, dim=1)
best_actions_one_hot = F.one_hot(best_actions, policy.action_space.n)
q_target_best = torch.sum(
torch.where(
q_target > FLOAT_MIN, q_target, torch.tensor(0.0, device=q_target.device)
)
* best_actions_one_hot,
dim=1,
)
if config["num_atoms"] > 1:
raise ValueError("Distributional R2D2 not supported yet!")
else:
q_target_best_masked_tp1 = (1.0 - dones) * torch.cat(
[q_target_best[1:], torch.tensor([0.0], device=q_target_best.device)]
)
if config["use_h_function"]:
h_inv = h_inverse(q_target_best_masked_tp1, config["h_function_epsilon"])
target = h_function(
rewards + config["gamma"] ** config["n_step"] * h_inv,
config["h_function_epsilon"],
)
else:
target = (
rewards + config["gamma"] ** config["n_step"] * q_target_best_masked_tp1
)
# Seq-mask all loss-related terms.
seq_mask = sequence_mask(train_batch[SampleBatch.SEQ_LENS], T)[:, :-1]
# Mask away also the burn-in sequence at the beginning.
burn_in = policy.config["replay_buffer_config"]["replay_burn_in"]
if burn_in > 0 and burn_in < T:
seq_mask[:, :burn_in] = False
num_valid = torch.sum(seq_mask)
def reduce_mean_valid(t):
return torch.sum(t[seq_mask]) / num_valid
# Make sure use the correct time indices:
# Q(t) - [gamma * r + Q^(t+1)]
q_selected = q_selected.reshape([B, T])[:, :-1]
td_error = q_selected - target.reshape([B, T])[:, :-1].detach()
td_error = td_error * seq_mask
weights = weights.reshape([B, T])[:, :-1]
total_loss = reduce_mean_valid(weights * huber_loss(td_error))
# Store values for stats function in model (tower), such that for
# multi-GPU, we do not override them during the parallel loss phase.
model.tower_stats["total_loss"] = total_loss
model.tower_stats["mean_q"] = reduce_mean_valid(q_selected)
model.tower_stats["min_q"] = torch.min(q_selected)
model.tower_stats["max_q"] = torch.max(q_selected)
model.tower_stats["mean_td_error"] = reduce_mean_valid(td_error)
# Store per time chunk (b/c we need only one mean
# prioritized replay weight per stored sequence).
model.tower_stats["td_error"] = torch.mean(td_error, dim=-1)
return total_loss
def h_function(x, epsilon=1.0):
"""h-function to normalize target Qs, described in the paper [1].
h(x) = sign(x) * [sqrt(abs(x) + 1) - 1] + epsilon * x
Used in [1] in combination with h_inverse:
targets = h(r + gamma * h_inverse(Q^))
"""
return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1.0) - 1.0) + epsilon * x
def h_inverse(x, epsilon=1.0):
"""Inverse if the above h-function, described in the paper [1].
If x > 0.0:
h-1(x) = [2eps * x + (2eps + 1) - sqrt(4eps x + (2eps + 1)^2)] /
(2 * eps^2)
If x < 0.0:
h-1(x) = [2eps * x + (2eps + 1) + sqrt(-4eps x + (2eps + 1)^2)] /
(2 * eps^2)
"""
two_epsilon = epsilon * 2
if_x_pos = (
two_epsilon * x
+ (two_epsilon + 1.0)
- torch.sqrt(4.0 * epsilon * x + (two_epsilon + 1.0) ** 2)
) / (2.0 * epsilon ** 2)
if_x_neg = (
two_epsilon * x
- (two_epsilon + 1.0)
+ torch.sqrt(-4.0 * epsilon * x + (two_epsilon + 1.0) ** 2)
) / (2.0 * epsilon ** 2)
return torch.where(x < 0.0, if_x_neg, if_x_pos)
class ComputeTDErrorMixin:
"""Assign the `compute_td_error` method to the R2D2TorchPolicy
This allows us to prioritize on the worker side.
"""
def __init__(self):
def compute_td_error(
obs_t, act_t, rew_t, obs_tp1, done_mask, importance_weights
):
input_dict = self._lazy_tensor_dict({SampleBatch.CUR_OBS: obs_t})
input_dict[SampleBatch.ACTIONS] = act_t
input_dict[SampleBatch.REWARDS] = rew_t
input_dict[SampleBatch.NEXT_OBS] = obs_tp1
input_dict[SampleBatch.DONES] = done_mask
input_dict[PRIO_WEIGHTS] = importance_weights
# Do forward pass on loss to update td error attribute
r2d2_loss(self, self.model, None, input_dict)
return self.model.tower_stats["td_error"]
self.compute_td_error = compute_td_error
def build_q_stats(policy: Policy, batch: SampleBatch) -> Dict[str, TensorType]:
return {
"cur_lr": policy.cur_lr,
"total_loss": torch.mean(torch.stack(policy.get_tower_stats("total_loss"))),
"mean_q": torch.mean(torch.stack(policy.get_tower_stats("mean_q"))),
"min_q": torch.mean(torch.stack(policy.get_tower_stats("min_q"))),
"max_q": torch.mean(torch.stack(policy.get_tower_stats("max_q"))),
"mean_td_error": torch.mean(
torch.stack(policy.get_tower_stats("mean_td_error"))
),
}
def setup_early_mixins(
policy: Policy, obs_space, action_space, config: AlgorithmConfigDict
) -> None:
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
def before_loss_init(
policy: Policy,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: AlgorithmConfigDict,
) -> None:
ComputeTDErrorMixin.__init__(policy)
TargetNetworkMixin.__init__(policy)
def grad_process_and_td_error_fn(
policy: Policy, optimizer: "torch.optim.Optimizer", loss: TensorType
) -> Dict[str, TensorType]:
# Clip grads if configured.
return apply_grad_clipping(policy, optimizer, loss)
def extra_action_out_fn(
policy: Policy, input_dict, state_batches, model, action_dist
) -> Dict[str, TensorType]:
return {"q_values": policy.q_values}
R2D2TorchPolicy = build_policy_class(
name="R2D2TorchPolicy",
framework="torch",
loss_fn=r2d2_loss,
get_default_config=lambda: ray.rllib.algorithms.r2d2.r2d2.R2D2_DEFAULT_CONFIG,
make_model_and_action_dist=build_r2d2_model_and_distribution,
action_distribution_fn=get_distribution_inputs_and_class,
stats_fn=build_q_stats,
postprocess_fn=postprocess_nstep_and_prio,
optimizer_fn=adam_optimizer,
extra_grad_process_fn=grad_process_and_td_error_fn,
extra_learn_fetches_fn=concat_multi_gpu_td_errors,
extra_action_out_fn=extra_action_out_fn,
before_init=setup_early_mixins,
before_loss_init=before_loss_init,
mixins=[
TargetNetworkMixin,
ComputeTDErrorMixin,
LearningRateSchedule,
],
)