mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
142 lines
5 KiB
Python
142 lines
5 KiB
Python
import contextlib
|
|
import gym
|
|
import re
|
|
from typing import Dict, List, Union
|
|
|
|
from ray.util import log_once
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.utils.annotations import override, PublicAPI
|
|
from ray.rllib.utils.deprecation import deprecation_warning
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.typing import ModelConfigDict, TensorType
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
@PublicAPI
|
|
class TFModelV2(ModelV2):
|
|
"""TF version of ModelV2, which should contain a tf keras Model.
|
|
|
|
Note that this class by itself is not a valid model unless you
|
|
implement forward() in a subclass."""
|
|
|
|
def __init__(
|
|
self,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
num_outputs: int,
|
|
model_config: ModelConfigDict,
|
|
name: str,
|
|
):
|
|
"""Initializes a TFModelV2 instance.
|
|
|
|
Here is an example implementation for a subclass
|
|
``MyModelClass(TFModelV2)``::
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super(MyModelClass, self).__init__(*args, **kwargs)
|
|
input_layer = tf.keras.layers.Input(...)
|
|
hidden_layer = tf.keras.layers.Dense(...)(input_layer)
|
|
output_layer = tf.keras.layers.Dense(...)(hidden_layer)
|
|
value_layer = tf.keras.layers.Dense(...)(hidden_layer)
|
|
self.base_model = tf.keras.Model(
|
|
input_layer, [output_layer, value_layer])
|
|
"""
|
|
super().__init__(
|
|
obs_space, action_space, num_outputs, model_config, name, framework="tf"
|
|
)
|
|
|
|
# Deprecated: TFModelV2 now automatically track their variables.
|
|
self.var_list = []
|
|
|
|
if tf1.executing_eagerly():
|
|
self.graph = None
|
|
else:
|
|
self.graph = tf1.get_default_graph()
|
|
|
|
def context(self) -> contextlib.AbstractContextManager:
|
|
"""Returns a contextmanager for the current TF graph."""
|
|
if self.graph:
|
|
return self.graph.as_default()
|
|
else:
|
|
return ModelV2.context(self)
|
|
|
|
def update_ops(self) -> List[TensorType]:
|
|
"""Return the list of update ops for this model.
|
|
|
|
For example, this should include any BatchNorm update ops."""
|
|
return []
|
|
|
|
def register_variables(self, variables: List[TensorType]) -> None:
|
|
"""Register the given list of variables with this model."""
|
|
if log_once("deprecated_tfmodelv2_register_variables"):
|
|
deprecation_warning(old="TFModelV2.register_variables", error=False)
|
|
self.var_list.extend(variables)
|
|
|
|
@override(ModelV2)
|
|
def variables(
|
|
self, as_dict: bool = False
|
|
) -> Union[List[TensorType], Dict[str, TensorType]]:
|
|
if as_dict:
|
|
# Old way using `register_variables`.
|
|
if self.var_list:
|
|
return {v.name: v for v in self.var_list}
|
|
# New way: Automatically determine the var tree.
|
|
else:
|
|
return self._find_sub_modules("", self.__dict__)
|
|
|
|
# Old way using `register_variables`.
|
|
if self.var_list:
|
|
return list(self.var_list)
|
|
# New way: Automatically determine the var tree.
|
|
else:
|
|
return list(self.variables(as_dict=True).values())
|
|
|
|
@override(ModelV2)
|
|
def trainable_variables(
|
|
self, as_dict: bool = False
|
|
) -> Union[List[TensorType], Dict[str, TensorType]]:
|
|
if as_dict:
|
|
return {
|
|
k: v for k, v in self.variables(as_dict=True).items() if v.trainable
|
|
}
|
|
return [v for v in self.variables() if v.trainable]
|
|
|
|
@staticmethod
|
|
def _find_sub_modules(current_key, struct):
|
|
# Keras Model: key=k + "." + var-name (replace '/' by '.').
|
|
if isinstance(struct, tf.keras.models.Model) or isinstance(struct, tf.Module):
|
|
ret = {}
|
|
for var in struct.variables:
|
|
name = re.sub("/", ".", var.name)
|
|
key = current_key + "." + name
|
|
ret[key] = var
|
|
return ret
|
|
# Other TFModelV2: Include its vars into ours.
|
|
elif isinstance(struct, TFModelV2):
|
|
return {
|
|
current_key + "." + key: var
|
|
for key, var in struct.variables(as_dict=True).items()
|
|
}
|
|
# tf.Variable
|
|
elif isinstance(struct, tf.Variable):
|
|
return {current_key: struct}
|
|
# List/Tuple.
|
|
elif isinstance(struct, (tuple, list)):
|
|
ret = {}
|
|
for i, value in enumerate(struct):
|
|
sub_vars = TFModelV2._find_sub_modules(
|
|
current_key + "_{}".format(i), value
|
|
)
|
|
ret.update(sub_vars)
|
|
return ret
|
|
# Dict.
|
|
elif isinstance(struct, dict):
|
|
if current_key:
|
|
current_key += "_"
|
|
ret = {}
|
|
for key, value in struct.items():
|
|
sub_vars = TFModelV2._find_sub_modules(current_key + str(key), value)
|
|
ret.update(sub_vars)
|
|
return ret
|
|
return {}
|