ray/rllib/examples/recommender_system_with_recsim_and_slateq.py

228 lines
7 KiB
Python

"""Using an RLlib-ready RecSim environment and the SlateQ algorithm
for solving recommendation system problems.
This example supports three different RecSim (RLlib-ready) environments,
configured via the --env option:
- "long-term-satisfaction"
- "interest-exploration"
- "interest-evolution"
"""
import argparse
from datetime import datetime
import numpy as np
from scipy.stats import sem
import ray
from ray import tune
from ray.rllib.agents import slateq
from ray.rllib.agents import dqn
from ray.rllib.agents.slateq.slateq import ALL_SLATEQ_STRATEGIES
from ray.rllib.examples.env.recsim_recommender_system_envs import (
InterestEvolutionRecSimEnv,
InterestExplorationRecSimEnv,
LongTermSatisfactionRecSimEnv,
)
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.tune.logger import pretty_print
parser = argparse.ArgumentParser()
parser.add_argument(
"--run",
type=str,
default="SlateQ",
choices=["SlateQ", "DQN"],
help=(
"Select agent policy. Choose from: DQN and SlateQ. " "Default value: SlateQ."
),
)
parser.add_argument(
"--env",
type=str,
default="interest-evolution",
choices=["interest-evolution", "interest-exploration", "long-term-satisfaction"],
help=("Select the RecSim env to use."),
)
parser.add_argument(
"--slateq-strategy",
type=str,
default="QL",
help=(
"Strategy for the SlateQ agent. Choose from: "
+ ", ".join(ALL_SLATEQ_STRATEGIES)
+ ". "
"Default value: QL. Ignored when using Tune."
),
)
parser.add_argument(
"--random-test-episodes",
type=int,
default=0,
help="The number of test episodes to run with a random agent to figure out "
"up front what the random baseline reward is.",
)
parser.add_argument(
"--use-tune",
action="store_true",
help=(
"Run with Tune so that the results are logged into Tensorboard. "
"For debugging, it's easier to run without Ray Tune."
),
)
parser.add_argument("--tune-num-samples", type=int, default=1)
parser.add_argument(
"--env-num-candidates",
type=int,
default=100,
help="The number of candidates that the agent has to pick "
"`--env-slate-size` from each timestep. These candidates will be "
"sampled by the environment's built-in document sampler model.",
)
parser.add_argument(
"--env-slate-size",
type=int,
default=2,
help="The size of the slate to recommend (from out of "
"`--env-num-candidates` sampled docs) each timestep.",
)
parser.add_argument(
"--env-dont-resample-documents",
action="store_true",
help="Whether to NOT resample `--env-num-candidates` docs "
"each timestep. If set, the env will only sample `--env-num-candidates`"
" once at the beginning and the agent always has to pick "
"`--env-slate-size` docs from this sample.",
)
parser.add_argument("--env-seed", type=int, default=0)
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument("--num-gpus", type=float, default=0)
parser.add_argument("--num-workers", type=int, default=0)
parser.add_argument(
"--local-mode",
action="store_true",
help="Init Ray in local mode for easier debugging.",
)
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--stop-iters", type=int, default=2000)
parser.add_argument("--stop-reward", type=float, default=200.0)
parser.add_argument("--stop-timesteps", type=int, default=4000000)
def main():
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
env_config = {
"num_candidates": args.env_num_candidates,
"resample_documents": not args.env_dont_resample_documents,
"slate_size": args.env_slate_size,
"seed": args.env_seed,
"convert_to_discrete_action_space": args.run == "DQN",
}
config = {
"env": (
InterestEvolutionRecSimEnv
if args.env == "interest-evolution"
else InterestExplorationRecSimEnv
if args.env == "interest-exploration"
else LongTermSatisfactionRecSimEnv
),
"hiddens": [
1024,
1024,
],
"num_gpus": args.num_gpus,
"num_workers": args.num_workers,
"env_config": env_config,
"lr_choice_model": 0.003,
"lr_q_model": 0.003,
"rollout_fragment_length": 4,
"exploration_config": {
"epsilon_timesteps": 50000,
"final_epsilon": 0.02,
},
"target_network_update_freq": 1,
"tau": 5e-3,
"evaluation_interval": 1,
"evaluation_num_workers": 4,
"evaluation_duration": 200,
"evaluation_duration_unit": "episodes",
"evaluation_parallel_to_training": True,
}
# Perform a test run on the env with a random agent to see, what
# the random baseline reward is.
if args.random_test_episodes:
print(
f"Running {args.random_test_episodes} episodes to get a random "
"agent's baseline reward ..."
)
env = config["env"](config=env_config)
env.reset()
num_episodes = 0
episode_rewards = []
episode_reward = 0.0
while num_episodes < args.random_test_episodes:
action = env.action_space.sample()
_, r, d, _ = env.step(action)
episode_reward += r
if d:
num_episodes += 1
episode_rewards.append(episode_reward)
episode_reward = 0.0
env.reset()
print(
f"Ran {args.random_test_episodes} episodes with a random agent "
"reaching a mean episode return of "
f"{np.mean(episode_rewards)}+/-{sem(episode_rewards)}."
)
if args.use_tune:
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
time_signature = datetime.now().strftime("%Y-%m-%d_%H_%M_%S")
name = f"SlateQ/{args.run}-seed{args.env_seed}-{time_signature}"
if args.run == "SlateQ":
config.update(
{
"slateq_strategy": args.slateq_strategy,
}
)
results = tune.run(
args.run,
stop=stop,
name=name,
config=config,
num_samples=args.tune_num_samples,
verbose=2,
)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
else:
# Directly run using the trainer interface (good for debugging).
if args.run == "DQN":
trainer = dqn.DQNTrainer(config=config)
else:
config.update(
{
"slateq_strategy": args.slateq_strategy,
}
)
trainer = slateq.SlateQTrainer(config=config)
for i in range(10):
result = trainer.train()
print(pretty_print(result))
ray.shutdown()
if __name__ == "__main__":
main()