mirror of
https://github.com/vale981/ray
synced 2025-03-05 18:11:42 -05:00
195 lines
6.8 KiB
Python
195 lines
6.8 KiB
Python
import logging
|
|
import gym
|
|
import numpy as np
|
|
from typing import Callable, List, Optional, Tuple
|
|
|
|
from ray.rllib.utils.annotations import override, PublicAPI
|
|
from ray.rllib.utils.typing import EnvActionType, EnvConfigDict, EnvInfoDict, \
|
|
EnvObsType, EnvType, PartialTrainerConfigDict
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@PublicAPI
|
|
class VectorEnv:
|
|
"""An environment that supports batch evaluation using clones of sub-envs.
|
|
"""
|
|
|
|
def __init__(self, observation_space: gym.Space, action_space: gym.Space,
|
|
num_envs: int):
|
|
"""Initializes a VectorEnv object.
|
|
|
|
Args:
|
|
observation_space (Space): The observation Space of a single
|
|
sub-env.
|
|
action_space (Space): The action Space of a single sub-env.
|
|
num_envs (int): The number of clones to make of the given sub-env.
|
|
"""
|
|
self.observation_space = observation_space
|
|
self.action_space = action_space
|
|
self.num_envs = num_envs
|
|
|
|
@staticmethod
|
|
def wrap(make_env: Optional[Callable[[int], EnvType]] = None,
|
|
existing_envs: Optional[List[gym.Env]] = None,
|
|
num_envs: int = 1,
|
|
action_space: Optional[gym.Space] = None,
|
|
observation_space: Optional[gym.Space] = None,
|
|
env_config: Optional[EnvConfigDict] = None,
|
|
policy_config: Optional[PartialTrainerConfigDict] = None):
|
|
return _VectorizedGymEnv(
|
|
make_env=make_env,
|
|
existing_envs=existing_envs or [],
|
|
num_envs=num_envs,
|
|
observation_space=observation_space,
|
|
action_space=action_space,
|
|
env_config=env_config,
|
|
policy_config=policy_config,
|
|
)
|
|
|
|
@PublicAPI
|
|
def vector_reset(self) -> List[EnvObsType]:
|
|
"""Resets all sub-environments.
|
|
|
|
Returns:
|
|
obs (List[any]): List of observations from each environment.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def reset_at(self, index: Optional[int] = None) -> EnvObsType:
|
|
"""Resets a single environment.
|
|
|
|
Args:
|
|
index (Optional[int]): An optional sub-env index to reset.
|
|
|
|
Returns:
|
|
obs (obj): Observations from the reset sub environment.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def vector_step(
|
|
self, actions: List[EnvActionType]
|
|
) -> Tuple[List[EnvObsType], List[float], List[bool], List[EnvInfoDict]]:
|
|
"""Performs a vectorized step on all sub environments using `actions`.
|
|
|
|
Args:
|
|
actions (List[any]): List of actions (one for each sub-env).
|
|
|
|
Returns:
|
|
obs (List[any]): New observations for each sub-env.
|
|
rewards (List[any]): Reward values for each sub-env.
|
|
dones (List[any]): Done values for each sub-env.
|
|
infos (List[any]): Info values for each sub-env.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def get_unwrapped(self) -> List[EnvType]:
|
|
"""Returns the underlying sub environments.
|
|
|
|
Returns:
|
|
List[Env]: List of all underlying sub environments.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
# TODO: (sven) Experimental method. Make @PublicAPI at some point.
|
|
def try_render_at(self, index: Optional[int] = None) -> \
|
|
Optional[np.ndarray]:
|
|
"""Renders a single environment.
|
|
|
|
Args:
|
|
index (Optional[int]): An optional sub-env index to render.
|
|
|
|
Returns:
|
|
Optional[np.ndarray]: Either a numpy RGB image
|
|
(shape=(w x h x 3) dtype=uint8) or None in case
|
|
rendering is handled directly by this method.
|
|
"""
|
|
pass
|
|
|
|
|
|
class _VectorizedGymEnv(VectorEnv):
|
|
"""Internal wrapper to translate any gym envs into a VectorEnv object.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
make_env=None,
|
|
existing_envs=None,
|
|
num_envs=1,
|
|
*,
|
|
observation_space=None,
|
|
action_space=None,
|
|
env_config=None,
|
|
policy_config=None,
|
|
):
|
|
"""Initializes a _VectorizedGymEnv object.
|
|
|
|
Args:
|
|
make_env (Optional[callable]): Factory that produces a new gym env
|
|
taking a single `config` dict arg. Must be defined if the
|
|
number of `existing_envs` is less than `num_envs`.
|
|
existing_envs (Optional[List[Env]]): Optional list of already
|
|
instantiated sub environments.
|
|
num_envs (int): Total number of sub environments in this VectorEnv.
|
|
action_space (Optional[Space]): The action space. If None, use
|
|
existing_envs[0]'s action space.
|
|
observation_space (Optional[Space]): The observation space.
|
|
If None, use existing_envs[0]'s action space.
|
|
env_config (Optional[dict]): Additional sub env config to pass to
|
|
make_env as first arg.
|
|
policy_config (Optional[PartialTrainerConfigDict]): An optional
|
|
trainer/policy config dict.
|
|
"""
|
|
self.envs = existing_envs
|
|
|
|
# Fill up missing envs (so we have exactly num_envs sub-envs in this
|
|
# VectorEnv.
|
|
while len(self.envs) < num_envs:
|
|
self.envs.append(make_env(len(self.envs)))
|
|
|
|
super().__init__(
|
|
observation_space=observation_space
|
|
or self.envs[0].observation_space,
|
|
action_space=action_space or self.envs[0].action_space,
|
|
num_envs=num_envs)
|
|
|
|
@override(VectorEnv)
|
|
def vector_reset(self):
|
|
return [e.reset() for e in self.envs]
|
|
|
|
@override(VectorEnv)
|
|
def reset_at(self, index: Optional[int] = None) -> EnvObsType:
|
|
if index is None:
|
|
index = 0
|
|
return self.envs[index].reset()
|
|
|
|
@override(VectorEnv)
|
|
def vector_step(self, actions):
|
|
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
|
|
for i in range(self.num_envs):
|
|
obs, r, done, info = self.envs[i].step(actions[i])
|
|
if not np.isscalar(r) or not np.isreal(r) or not np.isfinite(r):
|
|
raise ValueError(
|
|
"Reward should be finite scalar, got {} ({}). "
|
|
"Actions={}.".format(r, type(r), actions[i]))
|
|
if not isinstance(info, dict):
|
|
raise ValueError("Info should be a dict, got {} ({})".format(
|
|
info, type(info)))
|
|
obs_batch.append(obs)
|
|
rew_batch.append(r)
|
|
done_batch.append(done)
|
|
info_batch.append(info)
|
|
return obs_batch, rew_batch, done_batch, info_batch
|
|
|
|
@override(VectorEnv)
|
|
def get_unwrapped(self):
|
|
return self.envs
|
|
|
|
@override(VectorEnv)
|
|
def try_render_at(self, index: Optional[int] = None):
|
|
if index is None:
|
|
index = 0
|
|
return self.envs[index].render()
|