ray/rllib/examples/custom_keras_cnn_plus_rnn_model.py
Sven Mika 5ac5ac9560
[RLlib] Fix broken example: tf-eager with custom-RNN (#6732). (#7021)
* WIP.

* Fix float32 conversion in OneHot preprocessor (would cause float64 in eager, then NN-matmul-failure).
Add proper seq-len + state-in construction in eager_tf_policy.py::_compute_gradients().

* LINT.

* eager_tf_policy.py: Only set samples["seq_lens"] if RNN. Otherwise, eager-tracing will throw flattened-dict key-mismatch error.

* Move issue code to examples folder.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-02-06 09:44:08 -08:00

115 lines
4 KiB
Python

# Explains/tests Issues:
# https://github.com/ray-project/ray/issues/6928
# https://github.com/ray-project/ray/issues/6732
from gym.spaces import Discrete, Box
import numpy as np
from ray.rllib.agents.ppo import PPOTrainer
from ray.rllib.examples.random_env import RandomEnv
from ray.rllib.models import ModelCatalog
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.recurrent_tf_modelv2 import RecurrentTFModelV2
from ray.rllib.utils import try_import_tf
from ray.rllib.utils.annotations import override
tf = try_import_tf()
cnn_shape = (4, 4, 3)
class CustomModel(RecurrentTFModelV2):
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super(CustomModel, self).__init__(obs_space, action_space, num_outputs,
model_config, name)
self.cell_size = 16
visual_size = cnn_shape[0] * cnn_shape[1] * cnn_shape[2]
state_in_h = tf.keras.layers.Input(shape=(self.cell_size, ), name="h")
state_in_c = tf.keras.layers.Input(shape=(self.cell_size, ), name="c")
seq_in = tf.keras.layers.Input(shape=(), name="seq_in", dtype=tf.int32)
inputs = tf.keras.layers.Input(
shape=(None, visual_size), name="visual_inputs")
input_visual = inputs
input_visual = tf.reshape(
input_visual, [-1, cnn_shape[0], cnn_shape[1], cnn_shape[2]])
cnn_input = tf.keras.layers.Input(shape=cnn_shape, name="cnn_input")
cnn_model = tf.keras.applications.mobilenet_v2.MobileNetV2(
alpha=1.0,
include_top=True,
weights=None,
input_tensor=cnn_input,
pooling=None)
vision_out = cnn_model(input_visual)
vision_out = tf.reshape(
vision_out,
[-1, tf.shape(inputs)[1],
vision_out.shape.as_list()[-1]])
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
self.cell_size,
return_sequences=True,
return_state=True,
name="lstm")(
inputs=vision_out,
mask=tf.sequence_mask(seq_in),
initial_state=[state_in_h, state_in_c])
# Postprocess LSTM output with another hidden layer and compute values.
logits = tf.keras.layers.Dense(
self.num_outputs,
activation=tf.keras.activations.linear,
name="logits")(lstm_out)
values = tf.keras.layers.Dense(
1, activation=None, name="values")(lstm_out)
# Create the RNN model
self.rnn_model = tf.keras.Model(
inputs=[inputs, seq_in, state_in_h, state_in_c],
outputs=[logits, values, state_h, state_c])
self.register_variables(self.rnn_model.variables)
self.rnn_model.summary()
@override(RecurrentTFModelV2)
def forward_rnn(self, inputs, state, seq_lens):
model_out, self._value_out, h, c = self.rnn_model([inputs, seq_lens] +
state)
return model_out, [h, c]
@override(ModelV2)
def get_initial_state(self):
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32),
]
@override(ModelV2)
def value_function(self):
return tf.reshape(self._value_out, [-1])
if __name__ == "__main__":
ModelCatalog.register_custom_model("my_model", CustomModel)
trainer = PPOTrainer(
env=RandomEnv,
config={
# "eager": True, # <- should work for both eager or not
"model": {
"custom_model": "my_model",
"max_seq_len": 20,
},
"vf_share_layers": True,
"num_workers": 0, # no parallelism
"env_config": {
"action_space": Discrete(2),
# Test a simple Tuple observation space.
"observation_space": Box(
0.0, 1.0, shape=cnn_shape, dtype=np.float32)
}
})
trainer.train()