mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00

* WIP. * Fix float32 conversion in OneHot preprocessor (would cause float64 in eager, then NN-matmul-failure). Add proper seq-len + state-in construction in eager_tf_policy.py::_compute_gradients(). * LINT. * eager_tf_policy.py: Only set samples["seq_lens"] if RNN. Otherwise, eager-tracing will throw flattened-dict key-mismatch error. * Move issue code to examples folder. Co-authored-by: Eric Liang <ekhliang@gmail.com>
115 lines
4 KiB
Python
115 lines
4 KiB
Python
# Explains/tests Issues:
|
|
# https://github.com/ray-project/ray/issues/6928
|
|
# https://github.com/ray-project/ray/issues/6732
|
|
|
|
from gym.spaces import Discrete, Box
|
|
import numpy as np
|
|
|
|
from ray.rllib.agents.ppo import PPOTrainer
|
|
from ray.rllib.examples.random_env import RandomEnv
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.tf.recurrent_tf_modelv2 import RecurrentTFModelV2
|
|
from ray.rllib.utils import try_import_tf
|
|
from ray.rllib.utils.annotations import override
|
|
|
|
tf = try_import_tf()
|
|
|
|
cnn_shape = (4, 4, 3)
|
|
|
|
|
|
class CustomModel(RecurrentTFModelV2):
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config,
|
|
name):
|
|
super(CustomModel, self).__init__(obs_space, action_space, num_outputs,
|
|
model_config, name)
|
|
|
|
self.cell_size = 16
|
|
visual_size = cnn_shape[0] * cnn_shape[1] * cnn_shape[2]
|
|
|
|
state_in_h = tf.keras.layers.Input(shape=(self.cell_size, ), name="h")
|
|
state_in_c = tf.keras.layers.Input(shape=(self.cell_size, ), name="c")
|
|
seq_in = tf.keras.layers.Input(shape=(), name="seq_in", dtype=tf.int32)
|
|
|
|
inputs = tf.keras.layers.Input(
|
|
shape=(None, visual_size), name="visual_inputs")
|
|
|
|
input_visual = inputs
|
|
input_visual = tf.reshape(
|
|
input_visual, [-1, cnn_shape[0], cnn_shape[1], cnn_shape[2]])
|
|
cnn_input = tf.keras.layers.Input(shape=cnn_shape, name="cnn_input")
|
|
|
|
cnn_model = tf.keras.applications.mobilenet_v2.MobileNetV2(
|
|
alpha=1.0,
|
|
include_top=True,
|
|
weights=None,
|
|
input_tensor=cnn_input,
|
|
pooling=None)
|
|
vision_out = cnn_model(input_visual)
|
|
vision_out = tf.reshape(
|
|
vision_out,
|
|
[-1, tf.shape(inputs)[1],
|
|
vision_out.shape.as_list()[-1]])
|
|
|
|
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
|
|
self.cell_size,
|
|
return_sequences=True,
|
|
return_state=True,
|
|
name="lstm")(
|
|
inputs=vision_out,
|
|
mask=tf.sequence_mask(seq_in),
|
|
initial_state=[state_in_h, state_in_c])
|
|
|
|
# Postprocess LSTM output with another hidden layer and compute values.
|
|
logits = tf.keras.layers.Dense(
|
|
self.num_outputs,
|
|
activation=tf.keras.activations.linear,
|
|
name="logits")(lstm_out)
|
|
values = tf.keras.layers.Dense(
|
|
1, activation=None, name="values")(lstm_out)
|
|
|
|
# Create the RNN model
|
|
self.rnn_model = tf.keras.Model(
|
|
inputs=[inputs, seq_in, state_in_h, state_in_c],
|
|
outputs=[logits, values, state_h, state_c])
|
|
self.register_variables(self.rnn_model.variables)
|
|
self.rnn_model.summary()
|
|
|
|
@override(RecurrentTFModelV2)
|
|
def forward_rnn(self, inputs, state, seq_lens):
|
|
model_out, self._value_out, h, c = self.rnn_model([inputs, seq_lens] +
|
|
state)
|
|
return model_out, [h, c]
|
|
|
|
@override(ModelV2)
|
|
def get_initial_state(self):
|
|
return [
|
|
np.zeros(self.cell_size, np.float32),
|
|
np.zeros(self.cell_size, np.float32),
|
|
]
|
|
|
|
@override(ModelV2)
|
|
def value_function(self):
|
|
return tf.reshape(self._value_out, [-1])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ModelCatalog.register_custom_model("my_model", CustomModel)
|
|
trainer = PPOTrainer(
|
|
env=RandomEnv,
|
|
config={
|
|
# "eager": True, # <- should work for both eager or not
|
|
"model": {
|
|
"custom_model": "my_model",
|
|
"max_seq_len": 20,
|
|
},
|
|
"vf_share_layers": True,
|
|
"num_workers": 0, # no parallelism
|
|
"env_config": {
|
|
"action_space": Discrete(2),
|
|
# Test a simple Tuple observation space.
|
|
"observation_space": Box(
|
|
0.0, 1.0, shape=cnn_shape, dtype=np.float32)
|
|
}
|
|
})
|
|
trainer.train()
|