ray/rllib/models/tf/visionnet.py

503 lines
20 KiB
Python

import gym
from typing import Dict, List, Optional, Sequence
from ray.rllib.utils.annotations import DeveloperAPI
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.tf.misc import normc_initializer
from ray.rllib.models.utils import get_activation_fn, get_filter_config
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.typing import ModelConfigDict, TensorType
tf1, tf, tfv = try_import_tf()
# TODO: (sven) obsolete this class once we only support native keras models.
@DeveloperAPI
class VisionNetwork(TFModelV2):
"""Generic vision network implemented in ModelV2 API.
An additional post-conv fully connected stack can be added and configured
via the config keys:
`post_fcnet_hiddens`: Dense layer sizes after the Conv2D stack.
`post_fcnet_activation`: Activation function to use for this FC stack.
"""
def __init__(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: int,
model_config: ModelConfigDict,
name: str,
):
if not model_config.get("conv_filters"):
model_config["conv_filters"] = get_filter_config(obs_space.shape)
super(VisionNetwork, self).__init__(
obs_space, action_space, num_outputs, model_config, name
)
activation = get_activation_fn(
self.model_config.get("conv_activation"), framework="tf"
)
filters = self.model_config["conv_filters"]
assert len(filters) > 0, "Must provide at least 1 entry in `conv_filters`!"
# Post FC net config.
post_fcnet_hiddens = model_config.get("post_fcnet_hiddens", [])
post_fcnet_activation = get_activation_fn(
model_config.get("post_fcnet_activation"), framework="tf"
)
no_final_linear = self.model_config.get("no_final_linear")
vf_share_layers = self.model_config.get("vf_share_layers")
input_shape = obs_space.shape
self.data_format = "channels_last"
inputs = tf.keras.layers.Input(shape=input_shape, name="observations")
last_layer = inputs
# Whether the last layer is the output of a Flattened (rather than
# a n x (1,1) Conv2D).
self.last_layer_is_flattened = False
# Build the action layers
for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=activation,
padding="same",
data_format="channels_last",
name="conv{}".format(i),
)(last_layer)
out_size, kernel, stride = filters[-1]
# No final linear: Last layer has activation function and exits with
# num_outputs nodes (this could be a 1x1 conv or a FC layer, depending
# on `post_fcnet_...` settings).
if no_final_linear and num_outputs:
last_layer = tf.keras.layers.Conv2D(
out_size if post_fcnet_hiddens else num_outputs,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=activation,
padding="valid",
data_format="channels_last",
name="conv_out",
)(last_layer)
# Add (optional) post-fc-stack after last Conv2D layer.
layer_sizes = post_fcnet_hiddens[:-1] + (
[num_outputs] if post_fcnet_hiddens else []
)
feature_out = last_layer
for i, out_size in enumerate(layer_sizes):
feature_out = last_layer
last_layer = tf.keras.layers.Dense(
out_size,
name="post_fcnet_{}".format(i),
activation=post_fcnet_activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
# Finish network normally (w/o overriding last layer size with
# `num_outputs`), then add another linear one of size `num_outputs`.
else:
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=activation,
padding="valid",
data_format="channels_last",
name="conv{}".format(len(filters)),
)(last_layer)
# num_outputs defined. Use that to create an exact
# `num_output`-sized (1,1)-Conv2D.
if num_outputs:
if post_fcnet_hiddens:
last_cnn = last_layer = tf.keras.layers.Conv2D(
post_fcnet_hiddens[0],
[1, 1],
activation=post_fcnet_activation,
padding="same",
data_format="channels_last",
name="conv_out",
)(last_layer)
# Add (optional) post-fc-stack after last Conv2D layer.
for i, out_size in enumerate(
post_fcnet_hiddens[1:] + [num_outputs]
):
feature_out = last_layer
last_layer = tf.keras.layers.Dense(
out_size,
name="post_fcnet_{}".format(i + 1),
activation=post_fcnet_activation
if i < len(post_fcnet_hiddens) - 1
else None,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
else:
feature_out = last_layer
last_cnn = last_layer = tf.keras.layers.Conv2D(
num_outputs,
[1, 1],
activation=None,
padding="same",
data_format="channels_last",
name="conv_out",
)(last_layer)
if last_cnn.shape[1] != 1 or last_cnn.shape[2] != 1:
raise ValueError(
"Given `conv_filters` ({}) do not result in a [B, 1, "
"1, {} (`num_outputs`)] shape (but in {})! Please "
"adjust your Conv2D stack such that the dims 1 and 2 "
"are both 1.".format(
self.model_config["conv_filters"],
self.num_outputs,
list(last_cnn.shape),
)
)
# num_outputs not known -> Flatten, then set self.num_outputs
# to the resulting number of nodes.
else:
self.last_layer_is_flattened = True
last_layer = tf.keras.layers.Flatten(data_format="channels_last")(
last_layer
)
# Add (optional) post-fc-stack after last Conv2D layer.
for i, out_size in enumerate(post_fcnet_hiddens):
last_layer = tf.keras.layers.Dense(
out_size,
name="post_fcnet_{}".format(i),
activation=post_fcnet_activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
feature_out = last_layer
self.num_outputs = last_layer.shape[1]
logits_out = last_layer
# Build the value layers
if vf_share_layers:
if not self.last_layer_is_flattened:
feature_out = tf.keras.layers.Lambda(
lambda x: tf.squeeze(x, axis=[1, 2])
)(feature_out)
value_out = tf.keras.layers.Dense(
1,
name="value_out",
activation=None,
kernel_initializer=normc_initializer(0.01),
)(feature_out)
else:
# build a parallel set of hidden layers for the value net
last_layer = inputs
for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=activation,
padding="same",
data_format="channels_last",
name="conv_value_{}".format(i),
)(last_layer)
out_size, kernel, stride = filters[-1]
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=activation,
padding="valid",
data_format="channels_last",
name="conv_value_{}".format(len(filters)),
)(last_layer)
last_layer = tf.keras.layers.Conv2D(
1,
[1, 1],
activation=None,
padding="same",
data_format="channels_last",
name="conv_value_out",
)(last_layer)
value_out = tf.keras.layers.Lambda(lambda x: tf.squeeze(x, axis=[1, 2]))(
last_layer
)
self.base_model = tf.keras.Model(inputs, [logits_out, value_out])
def forward(
self,
input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType,
) -> (TensorType, List[TensorType]):
obs = input_dict["obs"]
if self.data_format == "channels_first":
obs = tf.transpose(obs, [0, 2, 3, 1])
# Explicit cast to float32 needed in eager.
model_out, self._value_out = self.base_model(tf.cast(obs, tf.float32))
# Our last layer is already flat.
if self.last_layer_is_flattened:
return model_out, state
# Last layer is a n x [1,1] Conv2D -> Flatten.
else:
return tf.squeeze(model_out, axis=[1, 2]), state
def value_function(self) -> TensorType:
return tf.reshape(self._value_out, [-1])
@DeveloperAPI
class Keras_VisionNetwork(tf.keras.Model if tf else object):
"""Generic vision network implemented in tf keras.
An additional post-conv fully connected stack can be added and configured
via the config keys:
`post_fcnet_hiddens`: Dense layer sizes after the Conv2D stack.
`post_fcnet_activation`: Activation function to use for this FC stack.
"""
def __init__(
self,
input_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: Optional[int] = None,
*,
name: str = "",
conv_filters: Optional[Sequence[Sequence[int]]] = None,
conv_activation: Optional[str] = None,
post_fcnet_hiddens: Optional[Sequence[int]] = (),
post_fcnet_activation: Optional[str] = None,
no_final_linear: bool = False,
vf_share_layers: bool = False,
free_log_std: bool = False,
**kwargs,
):
super().__init__(name=name)
if not conv_filters:
conv_filters = get_filter_config(input_space.shape)
assert len(conv_filters) > 0, "Must provide at least 1 entry in `conv_filters`!"
conv_activation = get_activation_fn(conv_activation, framework="tf")
post_fcnet_activation = get_activation_fn(post_fcnet_activation, framework="tf")
input_shape = input_space.shape
self.data_format = "channels_last"
inputs = tf.keras.layers.Input(shape=input_shape, name="observations")
last_layer = inputs
# Whether the last layer is the output of a Flattened (rather than
# a n x (1,1) Conv2D).
self.last_layer_is_flattened = False
# Build the action layers
for i, (out_size, kernel, stride) in enumerate(conv_filters[:-1], 1):
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=conv_activation,
padding="same",
data_format="channels_last",
name="conv{}".format(i),
)(last_layer)
out_size, kernel, stride = conv_filters[-1]
# No final linear: Last layer has activation function and exits with
# num_outputs nodes (this could be a 1x1 conv or a FC layer, depending
# on `post_fcnet_...` settings).
if no_final_linear and num_outputs:
last_layer = tf.keras.layers.Conv2D(
out_size if post_fcnet_hiddens else num_outputs,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=conv_activation,
padding="valid",
data_format="channels_last",
name="conv_out",
)(last_layer)
# Add (optional) post-fc-stack after last Conv2D layer.
layer_sizes = post_fcnet_hiddens[:-1] + (
[num_outputs] if post_fcnet_hiddens else []
)
for i, out_size in enumerate(layer_sizes):
last_layer = tf.keras.layers.Dense(
out_size,
name="post_fcnet_{}".format(i),
activation=post_fcnet_activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
# Finish network normally (w/o overriding last layer size with
# `num_outputs`), then add another linear one of size `num_outputs`.
else:
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=conv_activation,
padding="valid",
data_format="channels_last",
name="conv{}".format(len(conv_filters)),
)(last_layer)
# num_outputs defined. Use that to create an exact
# `num_output`-sized (1,1)-Conv2D.
if num_outputs:
if post_fcnet_hiddens:
last_cnn = last_layer = tf.keras.layers.Conv2D(
post_fcnet_hiddens[0],
[1, 1],
activation=post_fcnet_activation,
padding="same",
data_format="channels_last",
name="conv_out",
)(last_layer)
# Add (optional) post-fc-stack after last Conv2D layer.
for i, out_size in enumerate(
post_fcnet_hiddens[1:] + [num_outputs]
):
last_layer = tf.keras.layers.Dense(
out_size,
name="post_fcnet_{}".format(i + 1),
activation=post_fcnet_activation
if i < len(post_fcnet_hiddens) - 1
else None,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
else:
last_cnn = last_layer = tf.keras.layers.Conv2D(
num_outputs,
[1, 1],
activation=None,
padding="same",
data_format="channels_last",
name="conv_out",
)(last_layer)
if last_cnn.shape[1] != 1 or last_cnn.shape[2] != 1:
raise ValueError(
"Given `conv_filters` ({}) do not result in a [B, 1, "
"1, {} (`num_outputs`)] shape (but in {})! Please "
"adjust your Conv2D stack such that the dims 1 and 2 "
"are both 1.".format(
self.model_config["conv_filters"],
num_outputs,
list(last_cnn.shape),
)
)
# num_outputs not known -> Flatten.
else:
self.last_layer_is_flattened = True
last_layer = tf.keras.layers.Flatten(data_format="channels_last")(
last_layer
)
# Add (optional) post-fc-stack after last Conv2D layer.
for i, out_size in enumerate(post_fcnet_hiddens):
last_layer = tf.keras.layers.Dense(
out_size,
name="post_fcnet_{}".format(i),
activation=post_fcnet_activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
logits_out = last_layer
# Build the value layers
if vf_share_layers:
if not self.last_layer_is_flattened:
last_layer = tf.keras.layers.Lambda(
lambda x: tf.squeeze(x, axis=[1, 2])
)(last_layer)
value_out = tf.keras.layers.Dense(
1,
name="value_out",
activation=None,
kernel_initializer=normc_initializer(0.01),
)(last_layer)
else:
# build a parallel set of hidden layers for the value net
last_layer = inputs
for i, (out_size, kernel, stride) in enumerate(conv_filters[:-1], 1):
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=conv_activation,
padding="same",
data_format="channels_last",
name="conv_value_{}".format(i),
)(last_layer)
out_size, kernel, stride = conv_filters[-1]
last_layer = tf.keras.layers.Conv2D(
out_size,
kernel,
strides=stride
if isinstance(stride, (list, tuple))
else (stride, stride),
activation=conv_activation,
padding="valid",
data_format="channels_last",
name="conv_value_{}".format(len(conv_filters)),
)(last_layer)
last_layer = tf.keras.layers.Conv2D(
1,
[1, 1],
activation=None,
padding="same",
data_format="channels_last",
name="conv_value_out",
)(last_layer)
value_out = tf.keras.layers.Lambda(lambda x: tf.squeeze(x, axis=[1, 2]))(
last_layer
)
self.base_model = tf.keras.Model(inputs, [logits_out, value_out])
def call(
self, input_dict: SampleBatch
) -> (TensorType, List[TensorType], Dict[str, TensorType]):
obs = input_dict["obs"]
if self.data_format == "channels_first":
obs = tf.transpose(obs, [0, 2, 3, 1])
# Explicit cast to float32 needed in eager.
model_out, self._value_out = self.base_model(tf.cast(obs, tf.float32))
state = [v for k, v in input_dict.items() if k.startswith("state_in_")]
extra_outs = {SampleBatch.VF_PREDS: tf.reshape(self._value_out, [-1])}
# Our last layer is already flat.
if self.last_layer_is_flattened:
return model_out, state, extra_outs
# Last layer is a n x [1,1] Conv2D -> Flatten.
else:
return tf.squeeze(model_out, axis=[1, 2]), state, extra_outs