mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
503 lines
20 KiB
Python
503 lines
20 KiB
Python
import gym
|
|
from typing import Dict, List, Optional, Sequence
|
|
|
|
from ray.rllib.utils.annotations import DeveloperAPI
|
|
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
|
from ray.rllib.models.tf.misc import normc_initializer
|
|
from ray.rllib.models.utils import get_activation_fn, get_filter_config
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.typing import ModelConfigDict, TensorType
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
# TODO: (sven) obsolete this class once we only support native keras models.
|
|
@DeveloperAPI
|
|
class VisionNetwork(TFModelV2):
|
|
"""Generic vision network implemented in ModelV2 API.
|
|
|
|
An additional post-conv fully connected stack can be added and configured
|
|
via the config keys:
|
|
`post_fcnet_hiddens`: Dense layer sizes after the Conv2D stack.
|
|
`post_fcnet_activation`: Activation function to use for this FC stack.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
num_outputs: int,
|
|
model_config: ModelConfigDict,
|
|
name: str,
|
|
):
|
|
if not model_config.get("conv_filters"):
|
|
model_config["conv_filters"] = get_filter_config(obs_space.shape)
|
|
|
|
super(VisionNetwork, self).__init__(
|
|
obs_space, action_space, num_outputs, model_config, name
|
|
)
|
|
|
|
activation = get_activation_fn(
|
|
self.model_config.get("conv_activation"), framework="tf"
|
|
)
|
|
filters = self.model_config["conv_filters"]
|
|
assert len(filters) > 0, "Must provide at least 1 entry in `conv_filters`!"
|
|
|
|
# Post FC net config.
|
|
post_fcnet_hiddens = model_config.get("post_fcnet_hiddens", [])
|
|
post_fcnet_activation = get_activation_fn(
|
|
model_config.get("post_fcnet_activation"), framework="tf"
|
|
)
|
|
|
|
no_final_linear = self.model_config.get("no_final_linear")
|
|
vf_share_layers = self.model_config.get("vf_share_layers")
|
|
|
|
input_shape = obs_space.shape
|
|
self.data_format = "channels_last"
|
|
|
|
inputs = tf.keras.layers.Input(shape=input_shape, name="observations")
|
|
last_layer = inputs
|
|
# Whether the last layer is the output of a Flattened (rather than
|
|
# a n x (1,1) Conv2D).
|
|
self.last_layer_is_flattened = False
|
|
|
|
# Build the action layers
|
|
for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=activation,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv{}".format(i),
|
|
)(last_layer)
|
|
|
|
out_size, kernel, stride = filters[-1]
|
|
|
|
# No final linear: Last layer has activation function and exits with
|
|
# num_outputs nodes (this could be a 1x1 conv or a FC layer, depending
|
|
# on `post_fcnet_...` settings).
|
|
if no_final_linear and num_outputs:
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size if post_fcnet_hiddens else num_outputs,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv_out",
|
|
)(last_layer)
|
|
# Add (optional) post-fc-stack after last Conv2D layer.
|
|
layer_sizes = post_fcnet_hiddens[:-1] + (
|
|
[num_outputs] if post_fcnet_hiddens else []
|
|
)
|
|
feature_out = last_layer
|
|
|
|
for i, out_size in enumerate(layer_sizes):
|
|
feature_out = last_layer
|
|
last_layer = tf.keras.layers.Dense(
|
|
out_size,
|
|
name="post_fcnet_{}".format(i),
|
|
activation=post_fcnet_activation,
|
|
kernel_initializer=normc_initializer(1.0),
|
|
)(last_layer)
|
|
|
|
# Finish network normally (w/o overriding last layer size with
|
|
# `num_outputs`), then add another linear one of size `num_outputs`.
|
|
else:
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv{}".format(len(filters)),
|
|
)(last_layer)
|
|
|
|
# num_outputs defined. Use that to create an exact
|
|
# `num_output`-sized (1,1)-Conv2D.
|
|
if num_outputs:
|
|
if post_fcnet_hiddens:
|
|
last_cnn = last_layer = tf.keras.layers.Conv2D(
|
|
post_fcnet_hiddens[0],
|
|
[1, 1],
|
|
activation=post_fcnet_activation,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_out",
|
|
)(last_layer)
|
|
# Add (optional) post-fc-stack after last Conv2D layer.
|
|
for i, out_size in enumerate(
|
|
post_fcnet_hiddens[1:] + [num_outputs]
|
|
):
|
|
feature_out = last_layer
|
|
last_layer = tf.keras.layers.Dense(
|
|
out_size,
|
|
name="post_fcnet_{}".format(i + 1),
|
|
activation=post_fcnet_activation
|
|
if i < len(post_fcnet_hiddens) - 1
|
|
else None,
|
|
kernel_initializer=normc_initializer(1.0),
|
|
)(last_layer)
|
|
else:
|
|
feature_out = last_layer
|
|
last_cnn = last_layer = tf.keras.layers.Conv2D(
|
|
num_outputs,
|
|
[1, 1],
|
|
activation=None,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_out",
|
|
)(last_layer)
|
|
|
|
if last_cnn.shape[1] != 1 or last_cnn.shape[2] != 1:
|
|
raise ValueError(
|
|
"Given `conv_filters` ({}) do not result in a [B, 1, "
|
|
"1, {} (`num_outputs`)] shape (but in {})! Please "
|
|
"adjust your Conv2D stack such that the dims 1 and 2 "
|
|
"are both 1.".format(
|
|
self.model_config["conv_filters"],
|
|
self.num_outputs,
|
|
list(last_cnn.shape),
|
|
)
|
|
)
|
|
|
|
# num_outputs not known -> Flatten, then set self.num_outputs
|
|
# to the resulting number of nodes.
|
|
else:
|
|
self.last_layer_is_flattened = True
|
|
last_layer = tf.keras.layers.Flatten(data_format="channels_last")(
|
|
last_layer
|
|
)
|
|
|
|
# Add (optional) post-fc-stack after last Conv2D layer.
|
|
for i, out_size in enumerate(post_fcnet_hiddens):
|
|
last_layer = tf.keras.layers.Dense(
|
|
out_size,
|
|
name="post_fcnet_{}".format(i),
|
|
activation=post_fcnet_activation,
|
|
kernel_initializer=normc_initializer(1.0),
|
|
)(last_layer)
|
|
feature_out = last_layer
|
|
self.num_outputs = last_layer.shape[1]
|
|
logits_out = last_layer
|
|
|
|
# Build the value layers
|
|
if vf_share_layers:
|
|
if not self.last_layer_is_flattened:
|
|
feature_out = tf.keras.layers.Lambda(
|
|
lambda x: tf.squeeze(x, axis=[1, 2])
|
|
)(feature_out)
|
|
value_out = tf.keras.layers.Dense(
|
|
1,
|
|
name="value_out",
|
|
activation=None,
|
|
kernel_initializer=normc_initializer(0.01),
|
|
)(feature_out)
|
|
else:
|
|
# build a parallel set of hidden layers for the value net
|
|
last_layer = inputs
|
|
for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=activation,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_value_{}".format(i),
|
|
)(last_layer)
|
|
out_size, kernel, stride = filters[-1]
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv_value_{}".format(len(filters)),
|
|
)(last_layer)
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
1,
|
|
[1, 1],
|
|
activation=None,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_value_out",
|
|
)(last_layer)
|
|
value_out = tf.keras.layers.Lambda(lambda x: tf.squeeze(x, axis=[1, 2]))(
|
|
last_layer
|
|
)
|
|
|
|
self.base_model = tf.keras.Model(inputs, [logits_out, value_out])
|
|
|
|
def forward(
|
|
self,
|
|
input_dict: Dict[str, TensorType],
|
|
state: List[TensorType],
|
|
seq_lens: TensorType,
|
|
) -> (TensorType, List[TensorType]):
|
|
obs = input_dict["obs"]
|
|
if self.data_format == "channels_first":
|
|
obs = tf.transpose(obs, [0, 2, 3, 1])
|
|
# Explicit cast to float32 needed in eager.
|
|
model_out, self._value_out = self.base_model(tf.cast(obs, tf.float32))
|
|
# Our last layer is already flat.
|
|
if self.last_layer_is_flattened:
|
|
return model_out, state
|
|
# Last layer is a n x [1,1] Conv2D -> Flatten.
|
|
else:
|
|
return tf.squeeze(model_out, axis=[1, 2]), state
|
|
|
|
def value_function(self) -> TensorType:
|
|
return tf.reshape(self._value_out, [-1])
|
|
|
|
|
|
@DeveloperAPI
|
|
class Keras_VisionNetwork(tf.keras.Model if tf else object):
|
|
"""Generic vision network implemented in tf keras.
|
|
|
|
An additional post-conv fully connected stack can be added and configured
|
|
via the config keys:
|
|
`post_fcnet_hiddens`: Dense layer sizes after the Conv2D stack.
|
|
`post_fcnet_activation`: Activation function to use for this FC stack.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
num_outputs: Optional[int] = None,
|
|
*,
|
|
name: str = "",
|
|
conv_filters: Optional[Sequence[Sequence[int]]] = None,
|
|
conv_activation: Optional[str] = None,
|
|
post_fcnet_hiddens: Optional[Sequence[int]] = (),
|
|
post_fcnet_activation: Optional[str] = None,
|
|
no_final_linear: bool = False,
|
|
vf_share_layers: bool = False,
|
|
free_log_std: bool = False,
|
|
**kwargs,
|
|
):
|
|
|
|
super().__init__(name=name)
|
|
|
|
if not conv_filters:
|
|
conv_filters = get_filter_config(input_space.shape)
|
|
assert len(conv_filters) > 0, "Must provide at least 1 entry in `conv_filters`!"
|
|
|
|
conv_activation = get_activation_fn(conv_activation, framework="tf")
|
|
post_fcnet_activation = get_activation_fn(post_fcnet_activation, framework="tf")
|
|
|
|
input_shape = input_space.shape
|
|
self.data_format = "channels_last"
|
|
|
|
inputs = tf.keras.layers.Input(shape=input_shape, name="observations")
|
|
last_layer = inputs
|
|
# Whether the last layer is the output of a Flattened (rather than
|
|
# a n x (1,1) Conv2D).
|
|
self.last_layer_is_flattened = False
|
|
|
|
# Build the action layers
|
|
for i, (out_size, kernel, stride) in enumerate(conv_filters[:-1], 1):
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=conv_activation,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv{}".format(i),
|
|
)(last_layer)
|
|
|
|
out_size, kernel, stride = conv_filters[-1]
|
|
|
|
# No final linear: Last layer has activation function and exits with
|
|
# num_outputs nodes (this could be a 1x1 conv or a FC layer, depending
|
|
# on `post_fcnet_...` settings).
|
|
if no_final_linear and num_outputs:
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size if post_fcnet_hiddens else num_outputs,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=conv_activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv_out",
|
|
)(last_layer)
|
|
# Add (optional) post-fc-stack after last Conv2D layer.
|
|
layer_sizes = post_fcnet_hiddens[:-1] + (
|
|
[num_outputs] if post_fcnet_hiddens else []
|
|
)
|
|
for i, out_size in enumerate(layer_sizes):
|
|
last_layer = tf.keras.layers.Dense(
|
|
out_size,
|
|
name="post_fcnet_{}".format(i),
|
|
activation=post_fcnet_activation,
|
|
kernel_initializer=normc_initializer(1.0),
|
|
)(last_layer)
|
|
|
|
# Finish network normally (w/o overriding last layer size with
|
|
# `num_outputs`), then add another linear one of size `num_outputs`.
|
|
else:
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=conv_activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv{}".format(len(conv_filters)),
|
|
)(last_layer)
|
|
|
|
# num_outputs defined. Use that to create an exact
|
|
# `num_output`-sized (1,1)-Conv2D.
|
|
if num_outputs:
|
|
if post_fcnet_hiddens:
|
|
last_cnn = last_layer = tf.keras.layers.Conv2D(
|
|
post_fcnet_hiddens[0],
|
|
[1, 1],
|
|
activation=post_fcnet_activation,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_out",
|
|
)(last_layer)
|
|
# Add (optional) post-fc-stack after last Conv2D layer.
|
|
for i, out_size in enumerate(
|
|
post_fcnet_hiddens[1:] + [num_outputs]
|
|
):
|
|
last_layer = tf.keras.layers.Dense(
|
|
out_size,
|
|
name="post_fcnet_{}".format(i + 1),
|
|
activation=post_fcnet_activation
|
|
if i < len(post_fcnet_hiddens) - 1
|
|
else None,
|
|
kernel_initializer=normc_initializer(1.0),
|
|
)(last_layer)
|
|
else:
|
|
last_cnn = last_layer = tf.keras.layers.Conv2D(
|
|
num_outputs,
|
|
[1, 1],
|
|
activation=None,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_out",
|
|
)(last_layer)
|
|
|
|
if last_cnn.shape[1] != 1 or last_cnn.shape[2] != 1:
|
|
raise ValueError(
|
|
"Given `conv_filters` ({}) do not result in a [B, 1, "
|
|
"1, {} (`num_outputs`)] shape (but in {})! Please "
|
|
"adjust your Conv2D stack such that the dims 1 and 2 "
|
|
"are both 1.".format(
|
|
self.model_config["conv_filters"],
|
|
num_outputs,
|
|
list(last_cnn.shape),
|
|
)
|
|
)
|
|
|
|
# num_outputs not known -> Flatten.
|
|
else:
|
|
self.last_layer_is_flattened = True
|
|
last_layer = tf.keras.layers.Flatten(data_format="channels_last")(
|
|
last_layer
|
|
)
|
|
|
|
# Add (optional) post-fc-stack after last Conv2D layer.
|
|
for i, out_size in enumerate(post_fcnet_hiddens):
|
|
last_layer = tf.keras.layers.Dense(
|
|
out_size,
|
|
name="post_fcnet_{}".format(i),
|
|
activation=post_fcnet_activation,
|
|
kernel_initializer=normc_initializer(1.0),
|
|
)(last_layer)
|
|
logits_out = last_layer
|
|
|
|
# Build the value layers
|
|
if vf_share_layers:
|
|
if not self.last_layer_is_flattened:
|
|
last_layer = tf.keras.layers.Lambda(
|
|
lambda x: tf.squeeze(x, axis=[1, 2])
|
|
)(last_layer)
|
|
value_out = tf.keras.layers.Dense(
|
|
1,
|
|
name="value_out",
|
|
activation=None,
|
|
kernel_initializer=normc_initializer(0.01),
|
|
)(last_layer)
|
|
else:
|
|
# build a parallel set of hidden layers for the value net
|
|
last_layer = inputs
|
|
for i, (out_size, kernel, stride) in enumerate(conv_filters[:-1], 1):
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=conv_activation,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_value_{}".format(i),
|
|
)(last_layer)
|
|
out_size, kernel, stride = conv_filters[-1]
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=stride
|
|
if isinstance(stride, (list, tuple))
|
|
else (stride, stride),
|
|
activation=conv_activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv_value_{}".format(len(conv_filters)),
|
|
)(last_layer)
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
1,
|
|
[1, 1],
|
|
activation=None,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_value_out",
|
|
)(last_layer)
|
|
value_out = tf.keras.layers.Lambda(lambda x: tf.squeeze(x, axis=[1, 2]))(
|
|
last_layer
|
|
)
|
|
|
|
self.base_model = tf.keras.Model(inputs, [logits_out, value_out])
|
|
|
|
def call(
|
|
self, input_dict: SampleBatch
|
|
) -> (TensorType, List[TensorType], Dict[str, TensorType]):
|
|
obs = input_dict["obs"]
|
|
if self.data_format == "channels_first":
|
|
obs = tf.transpose(obs, [0, 2, 3, 1])
|
|
# Explicit cast to float32 needed in eager.
|
|
model_out, self._value_out = self.base_model(tf.cast(obs, tf.float32))
|
|
state = [v for k, v in input_dict.items() if k.startswith("state_in_")]
|
|
extra_outs = {SampleBatch.VF_PREDS: tf.reshape(self._value_out, [-1])}
|
|
# Our last layer is already flat.
|
|
if self.last_layer_is_flattened:
|
|
return model_out, state, extra_outs
|
|
# Last layer is a n x [1,1] Conv2D -> Flatten.
|
|
else:
|
|
return tf.squeeze(model_out, axis=[1, 2]), state, extra_outs
|