mirror of
https://github.com/vale981/ray
synced 2025-03-10 13:26:39 -04:00

Signed-off-by: Kai Fricke coding@kaifricke.com Why are these changes needed? Splitting up #26884: This PR includes changes to use Tuner() instead of tune.run() for most docs files (rst and py), and a change to move reuse_actors to the TuneConfig
163 lines
4.7 KiB
Python
163 lines
4.7 KiB
Python
# flake8: noqa
|
|
|
|
# __function_api_start__
|
|
from ray.air import session
|
|
|
|
|
|
def objective(x, a, b): # Define an objective function.
|
|
return a * (x ** 0.5) + b
|
|
|
|
|
|
def trainable(config): # Pass a "config" dictionary into your trainable.
|
|
|
|
for x in range(20): # "Train" for 20 iterations and compute intermediate scores.
|
|
score = objective(x, config["a"], config["b"])
|
|
|
|
session.report({"score": score}) # Send the score to Tune.
|
|
|
|
|
|
# __function_api_end__
|
|
|
|
|
|
# __class_api_start__
|
|
from ray import tune
|
|
|
|
|
|
def objective(x, a, b):
|
|
return a * (x ** 2) + b
|
|
|
|
|
|
class Trainable(tune.Trainable):
|
|
def setup(self, config):
|
|
# config (dict): A dict of hyperparameters
|
|
self.x = 0
|
|
self.a = config["a"]
|
|
self.b = config["b"]
|
|
|
|
def step(self): # This is called iteratively.
|
|
score = objective(self.x, self.a, self.b)
|
|
self.x += 1
|
|
return {"score": score}
|
|
|
|
# __class_api_end__
|
|
|
|
# TODO: this example does not work as advertised. Errors out.
|
|
def save_checkpoint(self, checkpoint_dir):
|
|
pass
|
|
|
|
def load_checkpoint(self, checkpoint_dir):
|
|
pass
|
|
|
|
|
|
# __run_tunable_start__
|
|
# Pass in a Trainable class or function, along with a search space "config".
|
|
tuner = tune.Tuner(trainable, param_space={"a": 2, "b": 4})
|
|
tuner.fit()
|
|
# __run_tunable_end__
|
|
|
|
# __run_tunable_samples_start__
|
|
tuner = tune.Tuner(
|
|
trainable, param_space={"a": 2, "b": 4}, tune_config=tune.TuneConfig(num_samples=10)
|
|
)
|
|
tuner.fit()
|
|
# __run_tunable_samples_end__
|
|
|
|
# __search_space_start__
|
|
space = {"a": tune.uniform(0, 1), "b": tune.uniform(0, 1)}
|
|
tuner = tune.Tuner(
|
|
trainable, param_space=space, tune_config=tune.TuneConfig(num_samples=10)
|
|
)
|
|
tuner.fit()
|
|
# __search_space_end__
|
|
|
|
# __config_start__
|
|
config = {
|
|
"uniform": tune.uniform(-5, -1), # Uniform float between -5 and -1
|
|
"quniform": tune.quniform(3.2, 5.4, 0.2), # Round to increments of 0.2
|
|
"loguniform": tune.loguniform(1e-4, 1e-1), # Uniform float in log space
|
|
"qloguniform": tune.qloguniform(1e-4, 1e-1, 5e-5), # Round to increments of 0.00005
|
|
"randn": tune.randn(10, 2), # Normal distribution with mean 10 and sd 2
|
|
"qrandn": tune.qrandn(10, 2, 0.2), # Round to increments of 0.2
|
|
"randint": tune.randint(-9, 15), # Random integer between -9 and 15
|
|
"qrandint": tune.qrandint(-21, 12, 3), # Round to increments of 3 (includes 12)
|
|
"lograndint": tune.lograndint(1, 10), # Random integer in log space
|
|
"qlograndint": tune.qlograndint(1, 10, 2), # Round to increments of 2
|
|
"choice": tune.choice(["a", "b", "c"]), # Choose one of these options uniformly
|
|
"func": tune.sample_from(
|
|
lambda spec: spec.config.uniform * 0.01
|
|
), # Depends on other value
|
|
"grid": tune.grid_search([32, 64, 128]), # Search over all these values
|
|
}
|
|
# __config_end__
|
|
|
|
# __bayes_start__
|
|
from ray.tune.search.bayesopt import BayesOptSearch
|
|
from ray import air
|
|
|
|
# Define the search space
|
|
search_space = {"a": tune.uniform(0, 1), "b": tune.uniform(0, 20)}
|
|
|
|
algo = BayesOptSearch(random_search_steps=4)
|
|
|
|
tuner = tune.Tuner(
|
|
trainable,
|
|
tune_config=tune.TuneConfig(
|
|
metric="score",
|
|
mode="min",
|
|
search_alg=algo,
|
|
),
|
|
run_config=air.RunConfig(stop={"training_iteration": 20}),
|
|
param_space=search_space,
|
|
)
|
|
tuner.fit()
|
|
# __bayes_end__
|
|
|
|
# __hyperband_start__
|
|
from ray.tune.schedulers import HyperBandScheduler
|
|
|
|
# Create HyperBand scheduler and minimize the score
|
|
hyperband = HyperBandScheduler(metric="score", mode="max")
|
|
|
|
config = {"a": tune.uniform(0, 1), "b": tune.uniform(0, 1)}
|
|
|
|
tuner = tune.Tuner(
|
|
trainable,
|
|
tune_config=tune.TuneConfig(
|
|
num_samples=20,
|
|
scheduler=hyperband,
|
|
),
|
|
param_space=config,
|
|
)
|
|
tuner.fit()
|
|
# __hyperband_end__
|
|
|
|
# __analysis_start__
|
|
tuner = tune.Tuner(
|
|
trainable,
|
|
tune_config=tune.TuneConfig(
|
|
metric="score",
|
|
mode="min",
|
|
search_alg=BayesOptSearch(random_search_steps=4),
|
|
),
|
|
run_config=air.RunConfig(
|
|
stop={"training_iteration": 20},
|
|
),
|
|
param_space=config,
|
|
)
|
|
results = tuner.fit()
|
|
|
|
best_result = results.get_best_result() # Get best result object
|
|
best_config = best_result.config # Get best trial's hyperparameters
|
|
best_logdir = best_result.log_dir # Get best trial's logdir
|
|
best_checkpoint = best_result.checkpoint # Get best trial's best checkpoint
|
|
best_metrics = best_result.metrics # Get best trial's last results
|
|
best_result_df = best_result.metrics_dataframe # Get best result as pandas dataframe
|
|
# __analysis_end__
|
|
|
|
# __results_start__
|
|
# Get a dataframe with the last results for each trial
|
|
df_results = results.get_dataframe()
|
|
|
|
# Get a dataframe of results for a specific score or mode
|
|
df = results.get_dataframe(filter_metric="score", filter_mode="max")
|
|
# __results_end__
|