ray/release/long_running_tests/workloads/serve.py

77 lines
1.7 KiB
Python

import time
import subprocess
from subprocess import PIPE
import requests
import ray
from ray import serve
from ray.cluster_utils import Cluster
num_redis_shards = 1
redis_max_memory = 10**8
object_store_memory = 10**8
num_nodes = 4
cluster = Cluster()
for i in range(num_nodes):
cluster.add_node(
redis_port=6379 if i == 0 else None,
num_redis_shards=num_redis_shards if i == 0 else None,
num_cpus=8,
num_gpus=0,
resources={str(i): 2},
object_store_memory=object_store_memory,
redis_max_memory=redis_max_memory,
dashboard_host="0.0.0.0",
)
ray.init(address=cluster.address, dashboard_host="0.0.0.0")
serve.start()
NUM_REPLICAS = 7
MAX_BATCH_SIZE = 16
@serve.deployment(name="echo", num_replicas=NUM_REPLICAS)
class Echo:
@serve.batch(max_batch_size=MAX_BATCH_SIZE)
async def handle_batch(self, requests):
time.sleep(0.01)
return ["hi" for _ in range(len(requests))]
async def __call__(self, request):
return await self.handle_batch(request)
Echo.deploy()
print("Warming up")
for _ in range(5):
resp = requests.get("http://127.0.0.1:8000/echo").text
print(resp)
time.sleep(0.5)
connections = int(NUM_REPLICAS * MAX_BATCH_SIZE * 0.75)
num_threads = 2
time_to_run = "60m"
while True:
proc = subprocess.Popen(
[
"wrk",
"-c",
str(connections),
"-t",
str(num_threads),
"-d",
time_to_run,
"http://127.0.0.1:8000/echo",
],
stdout=PIPE,
stderr=PIPE,
)
print("started load testing")
proc.wait()
out, err = proc.communicate()
print(out.decode())
print(err.decode())