ray/release/long_running_tests/workloads/apex.py
Kai Fricke 1d52ab819f
[release] release 1.3.0 results and test updates (#15366)
Convert a number of release tests and add logs for release 1.3.0
2021-05-04 22:10:04 +01:00

48 lines
1.4 KiB
Python

# This workload tests running APEX
import ray
from ray.tune import run_experiments
num_redis_shards = 5
redis_max_memory = 10**8
object_store_memory = 10**9
num_nodes = 3
message = ("Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer.")
assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory <
ray._private.utils.get_system_memory() / 2), message
# Simulate a cluster on one machine.
# cluster = Cluster()
# for i in range(num_nodes):
# cluster.add_node(redis_port=6379 if i == 0 else None,
# num_redis_shards=num_redis_shards if i == 0 else None,
# num_cpus=20,
# num_gpus=0,
# resources={str(i): 2},
# object_store_memory=object_store_memory,
# redis_max_memory=redis_max_memory,
# dashboard_host="0.0.0.0")
# ray.init(address=cluster.address)
ray.init()
# Run the workload.
run_experiments({
"apex": {
"run": "APEX",
"env": "Pong-v0",
"config": {
"num_workers": 3,
"num_gpus": 0,
"buffer_size": 10000,
"learning_starts": 0,
"rollout_fragment_length": 1,
"train_batch_size": 1,
"min_iter_time_s": 10,
"timesteps_per_iteration": 10,
},
}
})