ray/examples/carla/train_a3c.py
Eric Liang c60ccbad46 [carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382)
* wip

* Sat Dec 30 15:07:28 PST 2017

* log video

* video doesn't work well

* scenario integration

* Sat Dec 30 17:30:22 PST 2017

* Sat Dec 30 17:31:05 PST 2017

* Sat Dec 30 17:31:32 PST 2017

* Sat Dec 30 17:32:16 PST 2017

* Sat Dec 30 17:34:11 PST 2017

* Sat Dec 30 17:34:50 PST 2017

* Sat Dec 30 17:35:34 PST 2017

* Sat Dec 30 17:38:49 PST 2017

* Sat Dec 30 17:40:39 PST 2017

* Sat Dec 30 17:43:00 PST 2017

* Sat Dec 30 17:43:04 PST 2017

* Sat Dec 30 17:45:56 PST 2017

* Sat Dec 30 17:46:26 PST 2017

* Sat Dec 30 17:47:02 PST 2017

* Sat Dec 30 17:51:53 PST 2017

* Sat Dec 30 17:52:54 PST 2017

* Sat Dec 30 17:56:43 PST 2017

* Sat Dec 30 18:27:07 PST 2017

* Sat Dec 30 18:27:52 PST 2017

* fix train

* Sat Dec 30 18:41:51 PST 2017

* Sat Dec 30 18:54:11 PST 2017

* Sat Dec 30 18:56:22 PST 2017

* Sat Dec 30 19:05:04 PST 2017

* Sat Dec 30 19:05:23 PST 2017

* Sat Dec 30 19:11:53 PST 2017

* Sat Dec 30 19:14:31 PST 2017

* Sat Dec 30 19:16:20 PST 2017

* Sat Dec 30 19:18:05 PST 2017

* Sat Dec 30 19:18:45 PST 2017

* Sat Dec 30 19:22:44 PST 2017

* Sat Dec 30 19:24:41 PST 2017

* Sat Dec 30 19:26:57 PST 2017

* Sat Dec 30 19:40:37 PST 2017

* wip models

* reward bonus

* test prep

* Sun Dec 31 18:45:25 PST 2017

* Sun Dec 31 18:58:28 PST 2017

* Sun Dec 31 18:59:34 PST 2017

* Sun Dec 31 19:03:33 PST 2017

* Sun Dec 31 19:05:05 PST 2017

* Sun Dec 31 19:09:25 PST 2017

* fix train

* kill

* add tuple preprocessor

* Sun Dec 31 20:38:33 PST 2017

* Sun Dec 31 22:51:24 PST 2017

* Sun Dec 31 23:14:13 PST 2017

* Sun Dec 31 23:16:04 PST 2017

* Mon Jan  1 00:08:35 PST 2018

* Mon Jan  1 00:10:48 PST 2018

* Mon Jan  1 01:08:31 PST 2018

* Mon Jan  1 14:45:44 PST 2018

* Mon Jan  1 14:54:56 PST 2018

* Mon Jan  1 17:29:29 PST 2018

* switch to euclidean dists

* Mon Jan  1 17:39:27 PST 2018

* Mon Jan  1 17:41:47 PST 2018

* Mon Jan  1 17:44:18 PST 2018

* Mon Jan  1 17:47:09 PST 2018

* Mon Jan  1 20:31:02 PST 2018

* Mon Jan  1 20:39:33 PST 2018

* Mon Jan  1 20:40:55 PST 2018

* Mon Jan  1 20:55:06 PST 2018

* Mon Jan  1 21:05:52 PST 2018

* fix env path

* merge richards fix

* fix hash

* Mon Jan  1 22:04:00 PST 2018

* Mon Jan  1 22:25:29 PST 2018

* Mon Jan  1 22:30:42 PST 2018

* simplified reward function

* add framestack

* add env configs

* simplify speed reward

* Tue Jan  2 17:36:15 PST 2018

* Tue Jan  2 17:49:16 PST 2018

* Tue Jan  2 18:10:38 PST 2018

* add lane keeping simple mode

* Tue Jan  2 20:25:26 PST 2018

* Tue Jan  2 20:30:30 PST 2018

* Tue Jan  2 20:33:26 PST 2018

* Tue Jan  2 20:41:42 PST 2018

* ppo lane keep

* simplify discrete actions

* Tue Jan  2 21:41:05 PST 2018

* Tue Jan  2 21:49:03 PST 2018

* Tue Jan  2 22:12:23 PST 2018

* Tue Jan  2 22:14:42 PST 2018

* Tue Jan  2 22:20:59 PST 2018

* Tue Jan  2 22:23:43 PST 2018

* Tue Jan  2 22:26:27 PST 2018

* Tue Jan  2 22:27:20 PST 2018

* Tue Jan  2 22:44:00 PST 2018

* Tue Jan  2 22:57:58 PST 2018

* Tue Jan  2 23:08:51 PST 2018

* Tue Jan  2 23:11:32 PST 2018

* update dqn reward

* Thu Jan  4 12:29:40 PST 2018

* Thu Jan  4 12:30:26 PST 2018

* Update train_dqn.py

* fix
2018-01-05 21:32:41 -08:00

53 lines
1.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import ray
from ray.tune import grid_search, register_env, run_experiments
from env import CarlaEnv, ENV_CONFIG
from models import register_carla_model
from scenarios import TOWN2_STRAIGHT
env_name = "carla_env"
env_config = ENV_CONFIG.copy()
env_config.update({
"verbose": False,
"x_res": 80,
"y_res": 80,
"squash_action_logits": grid_search([False, True]),
"use_depth_camera": False,
"discrete_actions": False,
"server_map": "/Game/Maps/Town02",
"reward_function": grid_search(["custom", "corl2017"]),
"scenarios": TOWN2_STRAIGHT,
})
register_env(env_name, lambda env_config: CarlaEnv(env_config))
register_carla_model()
redis_address = ray.services.get_node_ip_address() + ":6379"
run_experiments({
"carla-a3c": {
"run": "A3C",
"env": "carla_env",
"resources": {"cpu": 5, "gpu": 2, "driver_gpu_limit": 0},
"config": {
"env_config": env_config,
"use_gpu_for_workers": True,
"model": {
"custom_model": "carla",
"custom_options": {
"image_shape": [80, 80, 6],
},
"conv_filters": [
[16, [8, 8], 4],
[32, [4, 4], 2],
[512, [10, 10], 1],
],
},
"gamma": 0.95,
"num_workers": 2,
},
},
}, redis_address=redis_address)