ray/rllib/agents/bandit/tests/test_bandits.py
2022-04-15 13:51:12 +02:00

70 lines
2.5 KiB
Python

import unittest
import ray
import ray.rllib.agents.bandit.bandit as bandit
from ray.rllib.examples.env.bandit_envs_discrete import SimpleContextualBandit
from ray.rllib.utils.test_utils import check_train_results, framework_iterator
class TestBandits(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_bandit_lin_ts_compilation(self):
"""Test whether a BanditLinTSTrainer can be built on all frameworks."""
config = {
# Use a simple bandit-friendly env.
"env": SimpleContextualBandit,
"num_envs_per_worker": 2, # Test batched inference.
"num_workers": 2, # Test distributed bandits.
}
num_iterations = 5
for _ in framework_iterator(config, frameworks="torch"):
for train_batch_size in [1, 10]:
config["train_batch_size"] = train_batch_size
trainer = bandit.BanditLinTSTrainer(config=config)
results = None
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
# Force good learning behavior (this is a very simple env).
self.assertTrue(results["episode_reward_mean"] == 10.0)
trainer.stop()
def test_bandit_lin_ucb_compilation(self):
"""Test whether a BanditLinUCBTrainer can be built on all frameworks."""
config = {
# Use a simple bandit-friendly env.
"env": SimpleContextualBandit,
"num_envs_per_worker": 2, # Test batched inference.
}
num_iterations = 5
for _ in framework_iterator(config, frameworks="torch"):
for train_batch_size in [1, 10]:
config["train_batch_size"] = train_batch_size
trainer = bandit.BanditLinUCBTrainer(config=config)
results = None
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
# Force good learning behavior (this is a very simple env).
self.assertTrue(results["episode_reward_mean"] == 10.0)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))