mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
265 lines
9.9 KiB
Python
265 lines
9.9 KiB
Python
import os
|
|
from pathlib import Path
|
|
import re
|
|
import sys
|
|
import unittest
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole
|
|
from ray.rllib.utils.test_utils import framework_iterator
|
|
|
|
|
|
def evaluate_test(algo, env="CartPole-v0", test_episode_rollout=False):
|
|
extra_config = ""
|
|
if algo == "ARS":
|
|
extra_config = ",\"train_batch_size\": 10, \"noise_size\": 250000"
|
|
elif algo == "ES":
|
|
extra_config = ",\"episodes_per_batch\": 1,\"train_batch_size\": 10, "\
|
|
"\"noise_size\": 250000"
|
|
|
|
for fw in framework_iterator(frameworks=("tf", "torch")):
|
|
fw_ = ", \"framework\": \"{}\"".format(fw)
|
|
|
|
tmp_dir = os.popen("mktemp -d").read()[:-1]
|
|
if not os.path.exists(tmp_dir):
|
|
sys.exit(1)
|
|
|
|
print("Saving results to {}".format(tmp_dir))
|
|
|
|
rllib_dir = str(Path(__file__).parent.parent.absolute())
|
|
print("RLlib dir = {}\nexists={}".format(rllib_dir,
|
|
os.path.exists(rllib_dir)))
|
|
os.system("python {}/train.py --local-dir={} --run={} "
|
|
"--checkpoint-freq=1 ".format(rllib_dir, tmp_dir, algo) +
|
|
"--config='{" + "\"num_workers\": 1, \"num_gpus\": 0{}{}".
|
|
format(fw_, extra_config) +
|
|
", \"timesteps_per_iteration\": 5,\"min_iter_time_s\": 0.1, "
|
|
"\"model\": {\"fcnet_hiddens\": [10]}"
|
|
"}' --stop='{\"training_iteration\": 1}'" +
|
|
" --env={} --no-ray-ui".format(env))
|
|
|
|
checkpoint_path = os.popen("ls {}/default/*/checkpoint_000001/"
|
|
"checkpoint-1".format(tmp_dir)).read()[:-1]
|
|
if not os.path.exists(checkpoint_path):
|
|
sys.exit(1)
|
|
print("Checkpoint path {} (exists)".format(checkpoint_path))
|
|
|
|
# Test rolling out n steps.
|
|
os.popen("python {}/evaluate.py --run={} \"{}\" --steps=10 "
|
|
"--out=\"{}/rollouts_10steps.pkl\" --no-render".format(
|
|
rllib_dir, algo, checkpoint_path, tmp_dir)).read()
|
|
if not os.path.exists(tmp_dir + "/rollouts_10steps.pkl"):
|
|
sys.exit(1)
|
|
print("evaluate output (10 steps) exists!")
|
|
|
|
# Test rolling out 1 episode.
|
|
if test_episode_rollout:
|
|
os.popen("python {}/evaluate.py --run={} \"{}\" --episodes=1 "
|
|
"--out=\"{}/rollouts_1episode.pkl\" --no-render".format(
|
|
rllib_dir, algo, checkpoint_path, tmp_dir)).read()
|
|
if not os.path.exists(tmp_dir + "/rollouts_1episode.pkl"):
|
|
sys.exit(1)
|
|
print("evaluate output (1 ep) exists!")
|
|
|
|
# Cleanup.
|
|
os.popen("rm -rf \"{}\"".format(tmp_dir)).read()
|
|
|
|
|
|
def learn_test_plus_evaluate(algo, env="CartPole-v0"):
|
|
for fw in framework_iterator(frameworks=("tf", "torch")):
|
|
fw_ = ", \\\"framework\\\": \\\"{}\\\"".format(fw)
|
|
|
|
tmp_dir = os.popen("mktemp -d").read()[:-1]
|
|
if not os.path.exists(tmp_dir):
|
|
# Last resort: Resolve via underlying tempdir (and cut tmp_.
|
|
tmp_dir = ray._private.utils.tempfile.gettempdir() + tmp_dir[4:]
|
|
if not os.path.exists(tmp_dir):
|
|
sys.exit(1)
|
|
|
|
print("Saving results to {}".format(tmp_dir))
|
|
|
|
rllib_dir = str(Path(__file__).parent.parent.absolute())
|
|
print("RLlib dir = {}\nexists={}".format(rllib_dir,
|
|
os.path.exists(rllib_dir)))
|
|
os.system("python {}/train.py --local-dir={} --run={} "
|
|
"--checkpoint-freq=1 --checkpoint-at-end ".format(
|
|
rllib_dir, tmp_dir, algo) +
|
|
"--config=\"{\\\"num_gpus\\\": 0, \\\"num_workers\\\": 1, "
|
|
"\\\"evaluation_config\\\": {\\\"explore\\\": false}" + fw_ +
|
|
"}\" " + "--stop=\"{\\\"episode_reward_mean\\\": 100.0}\"" +
|
|
" --env={}".format(env))
|
|
|
|
# Find last checkpoint and use that for the rollout.
|
|
checkpoint_path = os.popen("ls {}/default/*/checkpoint_*/"
|
|
"checkpoint-*".format(tmp_dir)).read()[:-1]
|
|
checkpoints = [
|
|
cp for cp in checkpoint_path.split("\n")
|
|
if re.match(r"^.+checkpoint-\d+$", cp)
|
|
]
|
|
# Sort by number and pick last (which should be the best checkpoint).
|
|
last_checkpoint = sorted(
|
|
checkpoints,
|
|
key=lambda x: int(re.match(r".+checkpoint-(\d+)", x).group(1)))[-1]
|
|
assert re.match(r"^.+checkpoint_\d+/checkpoint-\d+$", last_checkpoint)
|
|
if not os.path.exists(last_checkpoint):
|
|
sys.exit(1)
|
|
print("Best checkpoint={} (exists)".format(last_checkpoint))
|
|
|
|
# Test rolling out n steps.
|
|
result = os.popen(
|
|
"python {}/evaluate.py --run={} "
|
|
"--steps=400 "
|
|
"--out=\"{}/rollouts_n_steps.pkl\" --no-render \"{}\"".format(
|
|
rllib_dir, algo, tmp_dir, last_checkpoint)).read()[:-1]
|
|
if not os.path.exists(tmp_dir + "/rollouts_n_steps.pkl"):
|
|
sys.exit(1)
|
|
print("Rollout output exists -> Checking reward ...")
|
|
episodes = result.split("\n")
|
|
mean_reward = 0.0
|
|
num_episodes = 0
|
|
for ep in episodes:
|
|
mo = re.match(r"Episode .+reward: ([\d\.\-]+)", ep)
|
|
if mo:
|
|
mean_reward += float(mo.group(1))
|
|
num_episodes += 1
|
|
mean_reward /= num_episodes
|
|
print("Rollout's mean episode reward={}".format(mean_reward))
|
|
assert mean_reward >= 100.0
|
|
|
|
# Cleanup.
|
|
os.popen("rm -rf \"{}\"".format(tmp_dir)).read()
|
|
|
|
|
|
def learn_test_multi_agent_plus_evaluate(algo):
|
|
for fw in framework_iterator(frameworks=("tf", "torch")):
|
|
tmp_dir = os.popen("mktemp -d").read()[:-1]
|
|
if not os.path.exists(tmp_dir):
|
|
# Last resort: Resolve via underlying tempdir (and cut tmp_.
|
|
tmp_dir = ray._private.utils.tempfile.gettempdir() + tmp_dir[4:]
|
|
if not os.path.exists(tmp_dir):
|
|
sys.exit(1)
|
|
|
|
print("Saving results to {}".format(tmp_dir))
|
|
|
|
rllib_dir = str(Path(__file__).parent.parent.absolute())
|
|
print("RLlib dir = {}\nexists={}".format(rllib_dir,
|
|
os.path.exists(rllib_dir)))
|
|
|
|
def policy_fn(agent_id, episode, **kwargs):
|
|
return "pol{}".format(agent_id)
|
|
|
|
config = {
|
|
"num_gpus": 0,
|
|
"num_workers": 1,
|
|
"evaluation_config": {
|
|
"explore": False
|
|
},
|
|
"framework": fw,
|
|
"env": MultiAgentCartPole,
|
|
"multiagent": {
|
|
"policies": {"pol0", "pol1"},
|
|
"policy_mapping_fn": policy_fn,
|
|
},
|
|
}
|
|
stop = {"episode_reward_mean": 100.0}
|
|
tune.run(
|
|
algo,
|
|
config=config,
|
|
stop=stop,
|
|
checkpoint_freq=1,
|
|
checkpoint_at_end=True,
|
|
local_dir=tmp_dir,
|
|
verbose=1)
|
|
|
|
# Find last checkpoint and use that for the rollout.
|
|
checkpoint_path = os.popen("ls {}/PPO/*/checkpoint_*/"
|
|
"checkpoint-*".format(tmp_dir)).read()[:-1]
|
|
checkpoint_paths = checkpoint_path.split("\n")
|
|
assert len(checkpoint_paths) > 0
|
|
checkpoints = [
|
|
cp for cp in checkpoint_paths
|
|
if re.match(r"^.+checkpoint-\d+$", cp)
|
|
]
|
|
# Sort by number and pick last (which should be the best checkpoint).
|
|
last_checkpoint = sorted(
|
|
checkpoints,
|
|
key=lambda x: int(re.match(r".+checkpoint-(\d+)", x).group(1)))[-1]
|
|
assert re.match(r"^.+checkpoint_\d+/checkpoint-\d+$", last_checkpoint)
|
|
if not os.path.exists(last_checkpoint):
|
|
sys.exit(1)
|
|
print("Best checkpoint={} (exists)".format(last_checkpoint))
|
|
|
|
ray.shutdown()
|
|
|
|
# Test rolling out n steps.
|
|
result = os.popen(
|
|
"python {}/rollout.py --run={} "
|
|
"--steps=400 "
|
|
"--out=\"{}/rollouts_n_steps.pkl\" --no-render \"{}\"".format(
|
|
rllib_dir, algo, tmp_dir, last_checkpoint)).read()[:-1]
|
|
if not os.path.exists(tmp_dir + "/rollouts_n_steps.pkl"):
|
|
sys.exit(1)
|
|
print("Rollout output exists -> Checking reward ...")
|
|
episodes = result.split("\n")
|
|
mean_reward = 0.0
|
|
num_episodes = 0
|
|
for ep in episodes:
|
|
mo = re.match(r"Episode .+reward: ([\d\.\-]+)", ep)
|
|
if mo:
|
|
mean_reward += float(mo.group(1))
|
|
num_episodes += 1
|
|
mean_reward /= num_episodes
|
|
print("Rollout's mean episode reward={}".format(mean_reward))
|
|
assert mean_reward >= 100.0
|
|
|
|
# Cleanup.
|
|
os.popen("rm -rf \"{}\"".format(tmp_dir)).read()
|
|
|
|
|
|
class TestEvaluate1(unittest.TestCase):
|
|
def test_a3c(self):
|
|
evaluate_test("A3C")
|
|
|
|
def test_ddpg(self):
|
|
evaluate_test("DDPG", env="Pendulum-v0")
|
|
|
|
|
|
class TestEvaluate2(unittest.TestCase):
|
|
def test_dqn(self):
|
|
evaluate_test("DQN")
|
|
|
|
def test_es(self):
|
|
evaluate_test("ES")
|
|
|
|
|
|
class TestEvaluate3(unittest.TestCase):
|
|
def test_impala(self):
|
|
evaluate_test("IMPALA", env="CartPole-v0")
|
|
|
|
def test_ppo(self):
|
|
evaluate_test("PPO", env="CartPole-v0", test_episode_rollout=True)
|
|
|
|
|
|
class TestEvaluate4(unittest.TestCase):
|
|
def test_sac(self):
|
|
evaluate_test("SAC", env="Pendulum-v0")
|
|
|
|
|
|
class TestTrainAndEvaluate(unittest.TestCase):
|
|
def test_ppo_train_then_rollout(self):
|
|
learn_test_plus_evaluate("PPO")
|
|
|
|
def test_ppo_multi_agent_train_then_rollout(self):
|
|
learn_test_multi_agent_plus_evaluate("PPO")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
|
|
# One can specify the specific TestCase class to run.
|
|
# None for all unittest.TestCase classes in this file.
|
|
class_ = sys.argv[1] if len(sys.argv) > 1 else None
|
|
sys.exit(
|
|
pytest.main(
|
|
["-v", __file__ + ("" if class_ is None else "::" + class_)]))
|