ray/examples/resnet/cifar_input.py
Robert Nishihara 3ebfd850e1 Make example applications pep8 compliant. (#553)
* Test examples for pep8 compliance.

* Make rl_pong example pep8 compliant.

* Make policy gradient example pep8 compliant.

* Make lbfgs example pep8 compliant.

* Make hyperopt example pep8 compliant.

* Make a3c example pep8 compliant.

* Make evolution strategies example pep8 compliant.

* Make resnet example pep8 compliant.

* Fix.
2017-05-16 14:12:18 -07:00

117 lines
4.3 KiB
Python

"""CIFAR dataset input module, with the majority taken from
https://github.com/tensorflow/models/tree/master/resnet.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def build_data(data_path, size, dataset):
"""Creates the queue and preprocessing operations for the dataset.
Args:
data_path: Filename for cifar10 data.
size: The number of images in the dataset.
dataset: The dataset we are using.
Returns:
queue: A Tensorflow queue for extracting the images and labels.
"""
image_size = 32
if dataset == "cifar10":
label_bytes = 1
label_offset = 0
elif dataset == "cifar100":
label_bytes = 1
label_offset = 1
depth = 3
image_bytes = image_size * image_size * depth
record_bytes = label_bytes + label_offset + image_bytes
data_files = tf.gfile.Glob(data_path)
file_queue = tf.train.string_input_producer(data_files, shuffle=True)
# Read examples from files in the filename queue.
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
_, value = reader.read(file_queue)
# Convert these examples to dense labels and processed images.
record = tf.reshape(tf.decode_raw(value, tf.uint8), [record_bytes])
label = tf.cast(tf.slice(record, [label_offset], [label_bytes]), tf.int32)
# Convert from string to [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(tf.slice(record, [label_bytes], [image_bytes]),
[depth, image_size, image_size])
# Convert from [depth, height, width] to [height, width, depth].
image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
queue = tf.train.shuffle_batch([image, label], size, size, 0, num_threads=16)
return queue
def build_input(data, batch_size, dataset, train):
"""Build CIFAR image and labels.
Args:
data_path: Filename for cifar10 data.
batch_size: Input batch size.
train: True if we are training and false if we are testing.
Returns:
images: Batches of images of size [batch_size, image_size, image_size, 3].
labels: Batches of labels of size [batch_size, num_classes].
Raises:
ValueError: When the specified dataset is not supported.
"""
images_constant = tf.constant(data[0])
labels_constant = tf.constant(data[1])
image_size = 32
depth = 3
num_classes = 10 if dataset == "cifar10" else 100
image, label = tf.train.slice_input_producer([images_constant,
labels_constant],
capacity=16 * batch_size)
if train:
image = tf.image.resize_image_with_crop_or_pad(image, image_size + 4,
image_size + 4)
image = tf.random_crop(image, [image_size, image_size, 3])
image = tf.image.random_flip_left_right(image)
image = tf.image.per_image_standardization(image)
example_queue = tf.RandomShuffleQueue(
capacity=16 * batch_size,
min_after_dequeue=8 * batch_size,
dtypes=[tf.float32, tf.int32],
shapes=[[image_size, image_size, depth], [1]])
num_threads = 16
else:
image = tf.image.resize_image_with_crop_or_pad(image, image_size,
image_size)
image = tf.image.per_image_standardization(image)
example_queue = tf.FIFOQueue(
3 * batch_size,
dtypes=[tf.float32, tf.int32],
shapes=[[image_size, image_size, depth], [1]])
num_threads = 1
example_enqueue_op = example_queue.enqueue([image, label])
tf.train.add_queue_runner(tf.train.queue_runner.QueueRunner(
example_queue, [example_enqueue_op] * num_threads))
# Read "batch" labels + images from the example queue.
images, labels = example_queue.dequeue_many(batch_size)
labels = tf.reshape(labels, [batch_size, 1])
indices = tf.reshape(tf.range(0, batch_size, 1), [batch_size, 1])
labels = tf.sparse_to_dense(
tf.concat([indices, labels], 1),
[batch_size, num_classes], 1.0, 0.0)
assert len(images.get_shape()) == 4
assert images.get_shape()[0] == batch_size
assert images.get_shape()[-1] == 3
assert len(labels.get_shape()) == 2
assert labels.get_shape()[0] == batch_size
assert labels.get_shape()[1] == num_classes
if not train:
tf.summary.image("images", images)
return images, labels