ray/rllib/tests/test_supported_multi_agent.py

134 lines
4 KiB
Python

import unittest
import ray
from ray.rllib.agents.registry import get_trainer_class
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole, \
MultiAgentMountainCar
from ray.rllib.utils.test_utils import framework_iterator
from ray.tune import register_env
def check_support_multiagent(alg, config):
register_env("multi_agent_mountaincar",
lambda _: MultiAgentMountainCar({"num_agents": 2}))
register_env("multi_agent_cartpole",
lambda _: MultiAgentCartPole({"num_agents": 2}))
config["log_level"] = "ERROR"
for fw in framework_iterator(config):
if fw in ["tf2", "tfe"] and \
alg in ["A3C", "APEX", "APEX_DDPG", "IMPALA"]:
continue
if alg in ["DDPG", "APEX_DDPG", "SAC"]:
a = get_trainer_class(alg)(
config=config, env="multi_agent_mountaincar")
else:
a = get_trainer_class(alg)(
config=config, env="multi_agent_cartpole")
print(a.train())
a.stop()
class TestSupportedMultiAgentPG(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init(num_cpus=4)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_a3c_multiagent(self):
check_support_multiagent("A3C", {
"num_workers": 1,
"optimizer": {
"grads_per_step": 1
}
})
def test_impala_multiagent(self):
check_support_multiagent("IMPALA", {"num_gpus": 0})
def test_pg_multiagent(self):
check_support_multiagent("PG", {"num_workers": 1, "optimizer": {}})
def test_ppo_multiagent(self):
check_support_multiagent(
"PPO", {
"num_workers": 1,
"num_sgd_iter": 1,
"train_batch_size": 10,
"rollout_fragment_length": 10,
"sgd_minibatch_size": 1,
})
class TestSupportedMultiAgentOffPolicy(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init(num_cpus=6)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_apex_multiagent(self):
check_support_multiagent(
"APEX", {
"num_workers": 2,
"timesteps_per_iteration": 100,
"num_gpus": 0,
"buffer_size": 1000,
"min_iter_time_s": 1,
"learning_starts": 10,
"target_network_update_freq": 100,
"optimizer": {
"num_replay_buffer_shards": 1,
},
})
def test_apex_ddpg_multiagent(self):
check_support_multiagent(
"APEX_DDPG", {
"num_workers": 2,
"timesteps_per_iteration": 100,
"buffer_size": 1000,
"num_gpus": 0,
"min_iter_time_s": 1,
"learning_starts": 10,
"target_network_update_freq": 100,
"use_state_preprocessor": True,
})
def test_ddpg_multiagent(self):
check_support_multiagent(
"DDPG", {
"timesteps_per_iteration": 1,
"buffer_size": 1000,
"use_state_preprocessor": True,
"learning_starts": 500,
})
def test_dqn_multiagent(self):
check_support_multiagent("DQN", {
"timesteps_per_iteration": 1,
"buffer_size": 1000,
})
def test_sac_multiagent(self):
check_support_multiagent("SAC", {
"num_workers": 0,
"buffer_size": 1000,
"normalize_actions": False,
})
if __name__ == "__main__":
import pytest
import sys
# One can specify the specific TestCase class to run.
# None for all unittest.TestCase classes in this file.
class_ = sys.argv[1] if len(sys.argv) > 1 else None
sys.exit(
pytest.main(
["-v", __file__ + ("" if class_ is None else "::" + class_)]))