ray/rllib/utils/tests/test_check_env.py
2022-01-13 11:31:22 +01:00

202 lines
7.6 KiB
Python

import logging
import numpy as np
import pytest
import unittest
from unittest.mock import Mock, MagicMock
from ray.rllib.env.multi_agent_env import make_multi_agent
from ray.rllib.examples.env.random_env import RandomEnv
from ray.rllib.utils.pre_checks.env import check_env, check_gym_environments, \
check_multiagent_environments
class TestGymCheckEnv(unittest.TestCase):
@pytest.fixture(autouse=True)
def inject_fixtures(self, caplog):
caplog.set_level(logging.CRITICAL)
def test_has_observation_and_action_space(self):
env = Mock(spec=[])
with pytest.raises(
AttributeError, match="Env must have observation_space."):
check_gym_environments(env)
env = Mock(spec=["observation_space"])
with pytest.raises(
AttributeError, match="Env must have action_space."):
check_gym_environments(env)
def test_obs_and_action_spaces_are_gym_spaces(self):
env = RandomEnv()
observation_space = env.observation_space
env.observation_space = "not a gym space"
with pytest.raises(
ValueError, match="Observation space must be a gym.space"):
check_env(env)
env.observation_space = observation_space
env.action_space = "not an action space"
with pytest.raises(
ValueError, match="Action space must be a gym.space"):
check_env(env)
def test_sampled_observation_contained(self):
env = RandomEnv()
# check for observation that is out of bounds
error = ".*A sampled observation from your env wasn't contained .*"
env.observation_space.sample = MagicMock(return_value=5)
with pytest.raises(ValueError, match=error):
check_env(env)
# check for observation that is in bounds, but the wrong type
env.observation_space.sample = MagicMock(return_value=float(1))
with pytest.raises(ValueError, match=error):
check_env(env)
def test_sampled_action_contained(self):
env = RandomEnv()
error = ".*A sampled action from your env wasn't contained .*"
env.action_space.sample = MagicMock(return_value=5)
with pytest.raises(ValueError, match=error):
check_env(env)
# check for observation that is in bounds, but the wrong type
env.action_space.sample = MagicMock(return_value=float(1))
with pytest.raises(ValueError, match=error):
check_env(env)
def test_reset(self):
reset = MagicMock(return_value=5)
env = RandomEnv()
env.reset = reset
# check reset with out of bounds fails
error = ".*The observation collected from env.reset().*"
with pytest.raises(ValueError, match=error):
check_env(env)
# check reset with obs of incorrect type fails
reset = MagicMock(return_value=float(1))
env.reset = reset
with pytest.raises(ValueError, match=error):
check_env(env)
def test_step(self):
step = MagicMock(return_value=(5, 5, True, {}))
env = RandomEnv()
env.step = step
error = ".*The observation collected from env.step.*"
with pytest.raises(ValueError, match=error):
check_env(env)
# check reset that returns obs of incorrect type fails
step = MagicMock(return_value=(float(1), 5, True, {}))
env.step = step
with pytest.raises(ValueError, match=error):
check_env(env)
# check step that returns reward of non float/int fails
step = MagicMock(return_value=(1, "Not a valid reward", True, {}))
env.step = step
error = ("Your step function must return a reward that is integer or "
"float.")
with pytest.raises(AssertionError, match=error):
check_env(env)
# check step that returns a non bool fails
step = MagicMock(
return_value=(1, float(5), "not a valid done signal", {}))
env.step = step
error = "Your step function must return a done that is a boolean."
with pytest.raises(AssertionError, match=error):
check_env(env)
# check step that returns a non dict fails
step = MagicMock(
return_value=(1, float(5), True, "not a valid env info"))
env.step = step
error = "Your step function must return a info that is a dict."
with pytest.raises(AssertionError, match=error):
check_env(env)
class TestCheckMultiAgentEnv(unittest.TestCase):
@pytest.fixture(autouse=True)
def inject_fixtures(self, caplog):
caplog.set_level(logging.CRITICAL)
def test_check_env_not_correct_type_error(self):
env = RandomEnv()
with pytest.raises(ValueError, match="The passed env is not"):
check_multiagent_environments(env)
def test_check_env_reset_incorrect_error(self):
reset = MagicMock(return_value=5)
env = make_multi_agent("CartPole-v1")({"num_agents": 2})
env.reset = reset
with pytest.raises(ValueError, match="The observation returned by "):
check_env(env)
def test_check_incorrect_space_contains_functions_error(self):
def bad_contains_function(self, x):
raise ValueError("This is a bad contains function")
env = make_multi_agent("CartPole-v1")({"num_agents": 2})
bad_obs = {
0: np.array([np.inf, np.inf, np.inf, np.inf]),
1: np.array([np.inf, np.inf, np.inf, np.inf])
}
env.reset = lambda *_: bad_obs
with pytest.raises(
ValueError, match="The observation collected from "
"env"):
check_env(env)
env.observation_space_contains = bad_contains_function
with pytest.raises(
ValueError,
match="Your observation_space_contains "
"function has some"):
check_env(env)
env = make_multi_agent("CartPole-v1")({"num_agents": 2})
bad_action = {0: 2, 1: 2}
env.action_space_sample = lambda *_: bad_action
with pytest.raises(
ValueError,
match="The action collected from "
"action_space_sample"):
check_env(env)
env.action_space_contains = bad_contains_function
with pytest.raises(
ValueError,
match="Your action_space_contains "
"function has some error"):
check_env(env)
def test_check_env_step_incorrect_error(self):
step = MagicMock(return_value=(5, 5, True, {}))
env = make_multi_agent("CartPole-v1")({"num_agents": 2})
sampled_obs = env.reset()
env.step = step
with pytest.raises(
ValueError, match="The observation returned by env"):
check_env(env)
step = MagicMock(return_value=(sampled_obs, "Not a reward", True, {}))
env.step = step
with pytest.raises(
AssertionError,
match="Your step function must "
"return a reward "):
check_env(env)
step = MagicMock(return_value=(sampled_obs, 5, "Not a bool", {}))
env.step = step
with pytest.raises(
AssertionError, match="Your step function must "
"return a done"):
check_env(env)
step = MagicMock(return_value=(sampled_obs, 5, False, "Not a Dict"))
env.step = step
with pytest.raises(
AssertionError, match="Your step function must "
"return a info"):
check_env(env)
if __name__ == "__main__":
pytest.main()