mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00
202 lines
7.6 KiB
Python
202 lines
7.6 KiB
Python
import logging
|
|
import numpy as np
|
|
import pytest
|
|
import unittest
|
|
from unittest.mock import Mock, MagicMock
|
|
|
|
from ray.rllib.env.multi_agent_env import make_multi_agent
|
|
from ray.rllib.examples.env.random_env import RandomEnv
|
|
from ray.rllib.utils.pre_checks.env import check_env, check_gym_environments, \
|
|
check_multiagent_environments
|
|
|
|
|
|
class TestGymCheckEnv(unittest.TestCase):
|
|
@pytest.fixture(autouse=True)
|
|
def inject_fixtures(self, caplog):
|
|
caplog.set_level(logging.CRITICAL)
|
|
|
|
def test_has_observation_and_action_space(self):
|
|
env = Mock(spec=[])
|
|
with pytest.raises(
|
|
AttributeError, match="Env must have observation_space."):
|
|
check_gym_environments(env)
|
|
env = Mock(spec=["observation_space"])
|
|
with pytest.raises(
|
|
AttributeError, match="Env must have action_space."):
|
|
check_gym_environments(env)
|
|
|
|
def test_obs_and_action_spaces_are_gym_spaces(self):
|
|
env = RandomEnv()
|
|
observation_space = env.observation_space
|
|
env.observation_space = "not a gym space"
|
|
with pytest.raises(
|
|
ValueError, match="Observation space must be a gym.space"):
|
|
check_env(env)
|
|
env.observation_space = observation_space
|
|
env.action_space = "not an action space"
|
|
with pytest.raises(
|
|
ValueError, match="Action space must be a gym.space"):
|
|
check_env(env)
|
|
|
|
def test_sampled_observation_contained(self):
|
|
env = RandomEnv()
|
|
# check for observation that is out of bounds
|
|
error = ".*A sampled observation from your env wasn't contained .*"
|
|
env.observation_space.sample = MagicMock(return_value=5)
|
|
with pytest.raises(ValueError, match=error):
|
|
check_env(env)
|
|
# check for observation that is in bounds, but the wrong type
|
|
env.observation_space.sample = MagicMock(return_value=float(1))
|
|
with pytest.raises(ValueError, match=error):
|
|
check_env(env)
|
|
|
|
def test_sampled_action_contained(self):
|
|
env = RandomEnv()
|
|
error = ".*A sampled action from your env wasn't contained .*"
|
|
env.action_space.sample = MagicMock(return_value=5)
|
|
with pytest.raises(ValueError, match=error):
|
|
check_env(env)
|
|
# check for observation that is in bounds, but the wrong type
|
|
env.action_space.sample = MagicMock(return_value=float(1))
|
|
with pytest.raises(ValueError, match=error):
|
|
check_env(env)
|
|
|
|
def test_reset(self):
|
|
reset = MagicMock(return_value=5)
|
|
env = RandomEnv()
|
|
env.reset = reset
|
|
# check reset with out of bounds fails
|
|
error = ".*The observation collected from env.reset().*"
|
|
with pytest.raises(ValueError, match=error):
|
|
check_env(env)
|
|
# check reset with obs of incorrect type fails
|
|
reset = MagicMock(return_value=float(1))
|
|
env.reset = reset
|
|
with pytest.raises(ValueError, match=error):
|
|
check_env(env)
|
|
|
|
def test_step(self):
|
|
step = MagicMock(return_value=(5, 5, True, {}))
|
|
env = RandomEnv()
|
|
env.step = step
|
|
error = ".*The observation collected from env.step.*"
|
|
with pytest.raises(ValueError, match=error):
|
|
check_env(env)
|
|
|
|
# check reset that returns obs of incorrect type fails
|
|
step = MagicMock(return_value=(float(1), 5, True, {}))
|
|
env.step = step
|
|
with pytest.raises(ValueError, match=error):
|
|
check_env(env)
|
|
|
|
# check step that returns reward of non float/int fails
|
|
step = MagicMock(return_value=(1, "Not a valid reward", True, {}))
|
|
env.step = step
|
|
error = ("Your step function must return a reward that is integer or "
|
|
"float.")
|
|
with pytest.raises(AssertionError, match=error):
|
|
check_env(env)
|
|
|
|
# check step that returns a non bool fails
|
|
step = MagicMock(
|
|
return_value=(1, float(5), "not a valid done signal", {}))
|
|
env.step = step
|
|
error = "Your step function must return a done that is a boolean."
|
|
with pytest.raises(AssertionError, match=error):
|
|
check_env(env)
|
|
|
|
# check step that returns a non dict fails
|
|
step = MagicMock(
|
|
return_value=(1, float(5), True, "not a valid env info"))
|
|
env.step = step
|
|
error = "Your step function must return a info that is a dict."
|
|
with pytest.raises(AssertionError, match=error):
|
|
check_env(env)
|
|
|
|
|
|
class TestCheckMultiAgentEnv(unittest.TestCase):
|
|
@pytest.fixture(autouse=True)
|
|
def inject_fixtures(self, caplog):
|
|
caplog.set_level(logging.CRITICAL)
|
|
|
|
def test_check_env_not_correct_type_error(self):
|
|
env = RandomEnv()
|
|
with pytest.raises(ValueError, match="The passed env is not"):
|
|
check_multiagent_environments(env)
|
|
|
|
def test_check_env_reset_incorrect_error(self):
|
|
reset = MagicMock(return_value=5)
|
|
env = make_multi_agent("CartPole-v1")({"num_agents": 2})
|
|
env.reset = reset
|
|
with pytest.raises(ValueError, match="The observation returned by "):
|
|
check_env(env)
|
|
|
|
def test_check_incorrect_space_contains_functions_error(self):
|
|
def bad_contains_function(self, x):
|
|
raise ValueError("This is a bad contains function")
|
|
|
|
env = make_multi_agent("CartPole-v1")({"num_agents": 2})
|
|
bad_obs = {
|
|
0: np.array([np.inf, np.inf, np.inf, np.inf]),
|
|
1: np.array([np.inf, np.inf, np.inf, np.inf])
|
|
}
|
|
env.reset = lambda *_: bad_obs
|
|
with pytest.raises(
|
|
ValueError, match="The observation collected from "
|
|
"env"):
|
|
check_env(env)
|
|
env.observation_space_contains = bad_contains_function
|
|
with pytest.raises(
|
|
ValueError,
|
|
match="Your observation_space_contains "
|
|
"function has some"):
|
|
check_env(env)
|
|
env = make_multi_agent("CartPole-v1")({"num_agents": 2})
|
|
bad_action = {0: 2, 1: 2}
|
|
env.action_space_sample = lambda *_: bad_action
|
|
with pytest.raises(
|
|
ValueError,
|
|
match="The action collected from "
|
|
"action_space_sample"):
|
|
check_env(env)
|
|
|
|
env.action_space_contains = bad_contains_function
|
|
with pytest.raises(
|
|
ValueError,
|
|
match="Your action_space_contains "
|
|
"function has some error"):
|
|
check_env(env)
|
|
|
|
def test_check_env_step_incorrect_error(self):
|
|
step = MagicMock(return_value=(5, 5, True, {}))
|
|
env = make_multi_agent("CartPole-v1")({"num_agents": 2})
|
|
sampled_obs = env.reset()
|
|
env.step = step
|
|
with pytest.raises(
|
|
ValueError, match="The observation returned by env"):
|
|
check_env(env)
|
|
|
|
step = MagicMock(return_value=(sampled_obs, "Not a reward", True, {}))
|
|
env.step = step
|
|
with pytest.raises(
|
|
AssertionError,
|
|
match="Your step function must "
|
|
"return a reward "):
|
|
check_env(env)
|
|
step = MagicMock(return_value=(sampled_obs, 5, "Not a bool", {}))
|
|
env.step = step
|
|
with pytest.raises(
|
|
AssertionError, match="Your step function must "
|
|
"return a done"):
|
|
check_env(env)
|
|
|
|
step = MagicMock(return_value=(sampled_obs, 5, False, "Not a Dict"))
|
|
env.step = step
|
|
with pytest.raises(
|
|
AssertionError, match="Your step function must "
|
|
"return a info"):
|
|
check_env(env)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|