mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
122 lines
3.8 KiB
Python
122 lines
3.8 KiB
Python
import numpy as np
|
|
import os
|
|
import pprint
|
|
import random
|
|
from typing import Any, Mapping, Optional
|
|
|
|
from ray.rllib.policy.sample_batch import SampleBatch, MultiAgentBatch
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
|
|
_printer = pprint.PrettyPrinter(indent=2, width=60)
|
|
|
|
|
|
def summarize(obj: Any) -> Any:
|
|
"""Return a pretty-formatted string for an object.
|
|
|
|
This has special handling for pretty-formatting of commonly used data types
|
|
in RLlib, such as SampleBatch, numpy arrays, etc.
|
|
|
|
Args:
|
|
obj: The object to format.
|
|
|
|
Returns:
|
|
The summarized object.
|
|
"""
|
|
|
|
return _printer.pformat(_summarize(obj))
|
|
|
|
|
|
def _summarize(obj):
|
|
if isinstance(obj, Mapping):
|
|
return {k: _summarize(v) for k, v in obj.items()}
|
|
elif hasattr(obj, "_asdict"):
|
|
return {
|
|
"type": obj.__class__.__name__,
|
|
"data": _summarize(obj._asdict()),
|
|
}
|
|
elif isinstance(obj, list):
|
|
return [_summarize(x) for x in obj]
|
|
elif isinstance(obj, tuple):
|
|
return tuple(_summarize(x) for x in obj)
|
|
elif isinstance(obj, np.ndarray):
|
|
if obj.size == 0:
|
|
return _StringValue("np.ndarray({}, dtype={})".format(
|
|
obj.shape, obj.dtype))
|
|
elif obj.dtype == object or obj.dtype.type is np.str_:
|
|
return _StringValue("np.ndarray({}, dtype={}, head={})".format(
|
|
obj.shape, obj.dtype, _summarize(obj[0])))
|
|
else:
|
|
return _StringValue(
|
|
"np.ndarray({}, dtype={}, min={}, max={}, mean={})".format(
|
|
obj.shape, obj.dtype, round(float(np.min(obj)), 3),
|
|
round(float(np.max(obj)), 3), round(
|
|
float(np.mean(obj)), 3)))
|
|
elif isinstance(obj, MultiAgentBatch):
|
|
return {
|
|
"type": "MultiAgentBatch",
|
|
"policy_batches": _summarize(obj.policy_batches),
|
|
"count": obj.count,
|
|
}
|
|
elif isinstance(obj, SampleBatch):
|
|
return {
|
|
"type": "SampleBatch",
|
|
"data": {k: _summarize(v)
|
|
for k, v in obj.items()},
|
|
}
|
|
else:
|
|
return obj
|
|
|
|
|
|
class _StringValue:
|
|
def __init__(self, value):
|
|
self.value = value
|
|
|
|
def __repr__(self):
|
|
return self.value
|
|
|
|
|
|
def update_global_seed_if_necessary(framework: Optional[str] = None,
|
|
seed: Optional[int] = None) -> None:
|
|
"""Seed global modules such as random, numpy, torch, or tf.
|
|
|
|
This is useful for debugging and testing.
|
|
|
|
Args:
|
|
framework: The framework specifier (may be None).
|
|
seed: An optional int seed. If None, will not do
|
|
anything.
|
|
"""
|
|
if seed is None:
|
|
return
|
|
|
|
# Python random module.
|
|
random.seed(seed)
|
|
# Numpy.
|
|
np.random.seed(seed)
|
|
|
|
# Torch.
|
|
if framework == "torch":
|
|
torch, _ = try_import_torch()
|
|
torch.manual_seed(seed)
|
|
# See https://github.com/pytorch/pytorch/issues/47672.
|
|
cuda_version = torch.version.cuda
|
|
if cuda_version is not None and float(torch.version.cuda) >= 10.2:
|
|
os.environ["CUBLAS_WORKSPACE_CONFIG"] = "4096:8"
|
|
else:
|
|
from distutils.version import LooseVersion
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion("1.8.0"):
|
|
# Not all Operations support this.
|
|
torch.use_deterministic_algorithms(True)
|
|
else:
|
|
torch.set_deterministic(True)
|
|
# This is only for Convolution no problem.
|
|
torch.backends.cudnn.deterministic = True
|
|
elif framework == "tf2" or framework == "tfe":
|
|
tf1, tf, _ = try_import_tf()
|
|
# Tf2.x.
|
|
if framework == "tf2":
|
|
tf.random.set_seed(seed)
|
|
# Tf-eager.
|
|
elif framework == "tfe":
|
|
tf1.set_random_seed(seed)
|