ray/rllib/agents/dqn/r2d2_tf_policy.py

345 lines
11 KiB
Python

"""TensorFlow policy class used for R2D2."""
from typing import Dict, List, Optional, Tuple
import gym
import ray
from ray.rllib.algorithms.dqn.dqn_tf_policy import (
clip_gradients,
compute_q_values,
PRIO_WEIGHTS,
postprocess_nstep_and_prio,
)
from ray.rllib.algorithms.dqn.dqn_tf_policy import build_q_model
from ray.rllib.algorithms.dqn.simple_q_tf_policy import TargetNetworkMixin
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_mixins import LearningRateSchedule
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.tf_utils import huber_loss
from ray.rllib.utils.typing import ModelInputDict, TensorType, TrainerConfigDict
tf1, tf, tfv = try_import_tf()
def build_r2d2_model(
policy: Policy,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict,
) -> Tuple[ModelV2, ActionDistribution]:
"""Build q_model and target_model for DQN
Args:
policy (Policy): The policy, which will use the model for optimization.
obs_space (gym.spaces.Space): The policy's observation space.
action_space (gym.spaces.Space): The policy's action space.
config (TrainerConfigDict):
Returns:
q_model
Note: The target q model will not be returned, just assigned to
`policy.target_model`.
"""
# Create the policy's models.
model = build_q_model(policy, obs_space, action_space, config)
# Assert correct model type by checking the init state to be present.
# For attention nets: These don't necessarily publish their init state via
# Model.get_initial_state, but may only use the trajectory view API
# (view_requirements).
assert (
model.get_initial_state() != []
or model.view_requirements.get("state_in_0") is not None
), (
"R2D2 requires its model to be a recurrent one! Try using "
"`model.use_lstm` or `model.use_attention` in your config "
"to auto-wrap your model with an LSTM- or attention net."
)
return model
def r2d2_loss(policy: Policy, model, _, train_batch: SampleBatch) -> TensorType:
"""Constructs the loss for R2D2TFPolicy.
Args:
policy (Policy): The Policy to calculate the loss for.
model (ModelV2): The Model to calculate the loss for.
train_batch (SampleBatch): The training data.
Returns:
TensorType: A single loss tensor.
"""
config = policy.config
# Construct internal state inputs.
i = 0
state_batches = []
while "state_in_{}".format(i) in train_batch:
state_batches.append(train_batch["state_in_{}".format(i)])
i += 1
assert state_batches
# Q-network evaluation (at t).
q, _, _, _ = compute_q_values(
policy,
model,
train_batch,
state_batches=state_batches,
seq_lens=train_batch.get(SampleBatch.SEQ_LENS),
explore=False,
is_training=True,
)
# Target Q-network evaluation (at t+1).
q_target, _, _, _ = compute_q_values(
policy,
policy.target_model,
train_batch,
state_batches=state_batches,
seq_lens=train_batch.get(SampleBatch.SEQ_LENS),
explore=False,
is_training=True,
)
if not hasattr(policy, "target_q_func_vars"):
policy.target_q_func_vars = policy.target_model.variables()
actions = tf.cast(train_batch[SampleBatch.ACTIONS], tf.int64)
dones = tf.cast(train_batch[SampleBatch.DONES], tf.float32)
rewards = train_batch[SampleBatch.REWARDS]
weights = tf.cast(train_batch[PRIO_WEIGHTS], tf.float32)
B = tf.shape(state_batches[0])[0]
T = tf.shape(q)[0] // B
# Q scores for actions which we know were selected in the given state.
one_hot_selection = tf.one_hot(actions, policy.action_space.n)
q_selected = tf.reduce_sum(
tf.where(q > tf.float32.min, q, tf.zeros_like(q)) * one_hot_selection, axis=1
)
if config["double_q"]:
best_actions = tf.argmax(q, axis=1)
else:
best_actions = tf.argmax(q_target, axis=1)
best_actions_one_hot = tf.one_hot(best_actions, policy.action_space.n)
q_target_best = tf.reduce_sum(
tf.where(q_target > tf.float32.min, q_target, tf.zeros_like(q_target))
* best_actions_one_hot,
axis=1,
)
if config["num_atoms"] > 1:
raise ValueError("Distributional R2D2 not supported yet!")
else:
q_target_best_masked_tp1 = (1.0 - dones) * tf.concat(
[q_target_best[1:], tf.constant([0.0])], axis=0
)
if config["use_h_function"]:
h_inv = h_inverse(q_target_best_masked_tp1, config["h_function_epsilon"])
target = h_function(
rewards + config["gamma"] ** config["n_step"] * h_inv,
config["h_function_epsilon"],
)
else:
target = (
rewards + config["gamma"] ** config["n_step"] * q_target_best_masked_tp1
)
# Seq-mask all loss-related terms.
seq_mask = tf.sequence_mask(train_batch[SampleBatch.SEQ_LENS], T)[:, :-1]
# Mask away also the burn-in sequence at the beginning.
burn_in = policy.config["replay_buffer_config"]["replay_burn_in"]
# Making sure, this works for both static graph and eager.
if burn_in > 0:
seq_mask = tf.cond(
pred=tf.convert_to_tensor(burn_in, tf.int32) < T,
true_fn=lambda: tf.concat(
[tf.fill([B, burn_in], False), seq_mask[:, burn_in:]], 1
),
false_fn=lambda: seq_mask,
)
def reduce_mean_valid(t):
return tf.reduce_mean(tf.boolean_mask(t, seq_mask))
# Make sure to use the correct time indices:
# Q(t) - [gamma * r + Q^(t+1)]
q_selected = tf.reshape(q_selected, [B, T])[:, :-1]
td_error = q_selected - tf.stop_gradient(tf.reshape(target, [B, T])[:, :-1])
td_error = td_error * tf.cast(seq_mask, tf.float32)
weights = tf.reshape(weights, [B, T])[:, :-1]
policy._total_loss = reduce_mean_valid(weights * huber_loss(td_error))
# Store the TD-error per time chunk (b/c we need only one mean
# prioritized replay weight per stored sequence).
policy._td_error = tf.reduce_mean(td_error, axis=-1)
policy._loss_stats = {
"mean_q": reduce_mean_valid(q_selected),
"min_q": tf.reduce_min(q_selected),
"max_q": tf.reduce_max(q_selected),
"mean_td_error": reduce_mean_valid(td_error),
}
return policy._total_loss
def h_function(x, epsilon=1.0):
"""h-function to normalize target Qs, described in the paper [1].
h(x) = sign(x) * [sqrt(abs(x) + 1) - 1] + epsilon * x
Used in [1] in combination with h_inverse:
targets = h(r + gamma * h_inverse(Q^))
"""
return tf.sign(x) * (tf.sqrt(tf.abs(x) + 1.0) - 1.0) + epsilon * x
def h_inverse(x, epsilon=1.0):
"""Inverse if the above h-function, described in the paper [1].
If x > 0.0:
h-1(x) = [2eps * x + (2eps + 1) - sqrt(4eps x + (2eps + 1)^2)] /
(2 * eps^2)
If x < 0.0:
h-1(x) = [2eps * x + (2eps + 1) + sqrt(-4eps x + (2eps + 1)^2)] /
(2 * eps^2)
"""
two_epsilon = epsilon * 2
if_x_pos = (
two_epsilon * x
+ (two_epsilon + 1.0)
- tf.sqrt(4.0 * epsilon * x + (two_epsilon + 1.0) ** 2)
) / (2.0 * epsilon ** 2)
if_x_neg = (
two_epsilon * x
- (two_epsilon + 1.0)
+ tf.sqrt(-4.0 * epsilon * x + (two_epsilon + 1.0) ** 2)
) / (2.0 * epsilon ** 2)
return tf.where(x < 0.0, if_x_neg, if_x_pos)
class ComputeTDErrorMixin:
"""Assign the `compute_td_error` method to the R2D2TFPolicy
This allows us to prioritize on the worker side.
"""
def __init__(self):
def compute_td_error(
obs_t, act_t, rew_t, obs_tp1, done_mask, importance_weights
):
input_dict = self._lazy_tensor_dict({SampleBatch.CUR_OBS: obs_t})
input_dict[SampleBatch.ACTIONS] = act_t
input_dict[SampleBatch.REWARDS] = rew_t
input_dict[SampleBatch.NEXT_OBS] = obs_tp1
input_dict[SampleBatch.DONES] = done_mask
input_dict[PRIO_WEIGHTS] = importance_weights
# Do forward pass on loss to update td error attribute
r2d2_loss(self, self.model, None, input_dict)
return self._td_error
self.compute_td_error = compute_td_error
def get_distribution_inputs_and_class(
policy: Policy,
model: ModelV2,
*,
input_dict: ModelInputDict,
state_batches: Optional[List[TensorType]] = None,
seq_lens: Optional[TensorType] = None,
explore: bool = True,
is_training: bool = False,
**kwargs
) -> Tuple[TensorType, type, List[TensorType]]:
if policy.config["framework"] == "torch":
from ray.rllib.agents.dqn.r2d2_torch_policy import (
compute_q_values as torch_compute_q_values,
)
func = torch_compute_q_values
else:
func = compute_q_values
q_vals, logits, probs_or_logits, state_out = func(
policy, model, input_dict, state_batches, seq_lens, explore, is_training
)
policy.q_values = q_vals
if not hasattr(policy, "q_func_vars"):
policy.q_func_vars = model.variables()
action_dist_class = (
TorchCategorical if policy.config["framework"] == "torch" else Categorical
)
return policy.q_values, action_dist_class, state_out
def adam_optimizer(
policy: Policy, config: TrainerConfigDict
) -> "tf.keras.optimizers.Optimizer":
return tf1.train.AdamOptimizer(
learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"]
)
def build_q_stats(policy: Policy, batch) -> Dict[str, TensorType]:
return dict(
{
"cur_lr": policy.cur_lr,
},
**policy._loss_stats
)
def setup_early_mixins(
policy: Policy, obs_space, action_space, config: TrainerConfigDict
) -> None:
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
def before_loss_init(
policy: Policy,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict,
) -> None:
ComputeTDErrorMixin.__init__(policy)
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
R2D2TFPolicy = build_tf_policy(
name="R2D2TFPolicy",
loss_fn=r2d2_loss,
get_default_config=lambda: ray.rllib.agents.dqn.r2d2.R2D2_DEFAULT_CONFIG,
postprocess_fn=postprocess_nstep_and_prio,
stats_fn=build_q_stats,
make_model=build_r2d2_model,
action_distribution_fn=get_distribution_inputs_and_class,
optimizer_fn=adam_optimizer,
extra_action_out_fn=lambda policy: {"q_values": policy.q_values},
compute_gradients_fn=clip_gradients,
extra_learn_fetches_fn=lambda policy: {"td_error": policy._td_error},
before_init=setup_early_mixins,
before_loss_init=before_loss_init,
mixins=[
TargetNetworkMixin,
ComputeTDErrorMixin,
LearningRateSchedule,
],
)