ray/rllib/agents/bandit/bandit_torch_policy.py

109 lines
3.8 KiB
Python

import logging
import time
from gym import spaces
from ray.rllib.agents.bandit.bandit_tf_policy import validate_spaces
from ray.rllib.agents.bandit.bandit_torch_model import (
DiscreteLinearModelThompsonSampling,
DiscreteLinearModelUCB,
DiscreteLinearModel,
ParametricLinearModelThompsonSampling,
ParametricLinearModelUCB,
)
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.modelv2 import restore_original_dimensions
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy import TorchPolicy
from ray.rllib.utils.annotations import override
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.util.debug import log_once
logger = logging.getLogger(__name__)
class BanditPolicyOverrides:
@override(TorchPolicy)
def learn_on_batch(self, postprocessed_batch):
train_batch = self._lazy_tensor_dict(postprocessed_batch)
unflattened_obs = restore_original_dimensions(
train_batch[SampleBatch.CUR_OBS], self.observation_space, self.framework
)
info = {}
start = time.time()
self.model.partial_fit(
unflattened_obs,
train_batch[SampleBatch.REWARDS],
train_batch[SampleBatch.ACTIONS],
)
infos = postprocessed_batch["infos"]
if "regret" in infos[0]:
regret = sum(row["infos"]["regret"] for row in postprocessed_batch.rows())
self.regrets.append(regret)
info["cumulative_regret"] = sum(self.regrets)
else:
if log_once("no_regrets"):
logger.warning(
"The env did not report `regret` values in "
"its `info` return, ignoring."
)
info["update_latency"] = time.time() - start
return {LEARNER_STATS_KEY: info}
def make_model_and_action_dist(policy, obs_space, action_space, config):
dist_class, logit_dim = ModelCatalog.get_action_dist(
action_space, config["model"], framework="torch"
)
model_cls = DiscreteLinearModel
if hasattr(obs_space, "original_space"):
original_space = obs_space.original_space
else:
original_space = obs_space
exploration_config = config.get("exploration_config")
# Model is dependent on exploration strategy because of its implicitness
# TODO: Have a separate model catalogue for bandits
if exploration_config:
if exploration_config["type"] == "ThompsonSampling":
if isinstance(original_space, spaces.Dict):
assert (
"item" in original_space.spaces
), "Cannot find 'item' key in observation space"
model_cls = ParametricLinearModelThompsonSampling
else:
model_cls = DiscreteLinearModelThompsonSampling
elif exploration_config["type"] == "UpperConfidenceBound":
if isinstance(original_space, spaces.Dict):
assert (
"item" in original_space.spaces
), "Cannot find 'item' key in observation space"
model_cls = ParametricLinearModelUCB
else:
model_cls = DiscreteLinearModelUCB
model = model_cls(
obs_space, action_space, logit_dim, config["model"], name="LinearModel"
)
return model, dist_class
def init_cum_regret(policy, *args):
policy.regrets = []
BanditTorchPolicy = build_policy_class(
name="BanditTorchPolicy",
framework="torch",
validate_spaces=validate_spaces,
loss_fn=None,
after_init=init_cum_regret,
make_model_and_action_dist=make_model_and_action_dist,
optimizer_fn=lambda policy, config: None, # Pass a dummy optimizer
mixins=[BanditPolicyOverrides],
)