ray/doc/examples/lm/ray_train.sh
Zhuohan Li f286356e06 [docs] add pages about examples on training language models with fairseq (#5755)
* add pages about examples on training language models with fairseq and ray autoscaler

* better format

* update ray_train.sh

* Move EFS to the autoscaler file

* nits

* add comments to the code & use a new way to implement checkpoint hook

* small bug fix

* polish the doc

* fix formatting

* yaml

* update docs

* fix the bugs and add preprocess.sh

* fix lint

* Reduce batch size & fix lint

* shorttitle
2019-10-20 20:28:16 -07:00

26 lines
1.3 KiB
Bash

#!/bin/bash
TOTAL_UPDATES=125000 # Total number of training steps
WARMUP_UPDATES=10000 # Warmup the learning rate over this many updates
PEAK_LR=0.0005 # Peak learning rate, adjust as needed
TOKENS_PER_SAMPLE=512 # Max sequence length
MAX_POSITIONS=512 # Num. positional embeddings (usually same as above)
MAX_SENTENCES=8 # Number of sequences per batch on one GPU (batch size)
FIX_BATCH_SIZE=2048 # Number of batch size in total (max_sentences * update_freq * n_gpus)
SAVE_INTERVAL_UPDATES=1000 # save a checkpoint every N updates
LOG_DIR=$HOME/efs/lm/log/
DATA_DIR=$HOME/efs/lm/data-bin/wikitext-103/
mkdir -p $LOG_DIR
python $HOME/efs/lm/ray_train.py --fp16 $DATA_DIR \
--task masked_lm --criterion masked_lm \
--arch roberta_base --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE \
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --clip-norm 0.0 \
--lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
--dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
--max-sentences $MAX_SENTENCES \
--fix-batch-size $FIX_BATCH_SIZE \
--max-update $TOTAL_UPDATES --log-format simple --log-interval 1 \
--save-interval-updates $SAVE_INTERVAL_UPDATES \
--save-dir $LOG_DIR --ddp-backend=no_c10d