ray/rllib/examples/parametric_actions_cartpole.py

107 lines
3.3 KiB
Python

"""Example of handling variable length and/or parametric action spaces.
This is a toy example of the action-embedding based approach for handling large
discrete action spaces (potentially infinite in size), similar to this:
https://neuro.cs.ut.ee/the-use-of-embeddings-in-openai-five/
This currently works with RLlib's policy gradient style algorithms
(e.g., PG, PPO, IMPALA, A2C) and also DQN.
Note that since the model outputs now include "-inf" tf.float32.min
values, not all algorithm options are supported at the moment. For example,
algorithms might crash if they don't properly ignore the -inf action scores.
Working configurations are given below.
"""
import argparse
import os
import ray
from ray import tune
from ray.rllib.examples.env.parametric_actions_cartpole import \
ParametricActionsCartPole
from ray.rllib.examples.models.parametric_actions_model import \
ParametricActionsModel, TorchParametricActionsModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.tune.registry import register_env
parser = argparse.ArgumentParser()
parser.add_argument(
"--run",
type=str,
default="PPO",
help="The RLlib-registered algorithm to use.")
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.")
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.")
parser.add_argument(
"--stop-iters",
type=int,
default=200,
help="Number of iterations to train.")
parser.add_argument(
"--stop-timesteps",
type=int,
default=100000,
help="Number of timesteps to train.")
parser.add_argument(
"--stop-reward",
type=float,
default=150.0,
help="Reward at which we stop training.")
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
register_env("pa_cartpole", lambda _: ParametricActionsCartPole(10))
ModelCatalog.register_custom_model(
"pa_model", TorchParametricActionsModel
if args.framework == "torch" else ParametricActionsModel)
if args.run == "DQN":
cfg = {
# TODO(ekl) we need to set these to prevent the masked values
# from being further processed in DistributionalQModel, which
# would mess up the masking. It is possible to support these if we
# defined a custom DistributionalQModel that is aware of masking.
"hiddens": [],
"dueling": False,
}
else:
cfg = {}
config = dict(
{
"env": "pa_cartpole",
"model": {
"custom_model": "pa_model",
},
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_workers": 0,
"framework": args.framework,
},
**cfg)
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, stop=stop, config=config, verbose=1)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()