mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
93 lines
2.7 KiB
Python
93 lines
2.7 KiB
Python
"""Example of running a custom hand-coded policy alongside trainable policies.
|
|
|
|
This example has two policies:
|
|
(1) a simple PG policy
|
|
(2) a hand-coded policy that acts at random in the env (doesn't learn)
|
|
|
|
In the console output, you can see the PG policy does much better than random:
|
|
Result for PG_multi_cartpole_0:
|
|
...
|
|
policy_reward_mean:
|
|
pg_policy: 185.23
|
|
random: 21.255
|
|
...
|
|
"""
|
|
|
|
import argparse
|
|
import gym
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.tune.registry import register_env
|
|
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole
|
|
from ray.rllib.examples.policy.random_policy import RandomPolicy
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.")
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.")
|
|
parser.add_argument(
|
|
"--stop-iters",
|
|
type=int,
|
|
default=20,
|
|
help="Number of iterations to train.")
|
|
parser.add_argument(
|
|
"--stop-timesteps",
|
|
type=int,
|
|
default=100000,
|
|
help="Number of timesteps to train.")
|
|
parser.add_argument(
|
|
"--stop-reward",
|
|
type=float,
|
|
default=150.0,
|
|
help="Reward at which we stop training.")
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init()
|
|
|
|
# Simple environment with 4 independent cartpole entities
|
|
register_env("multi_agent_cartpole",
|
|
lambda _: MultiAgentCartPole({"num_agents": 4}))
|
|
single_env = gym.make("CartPole-v0")
|
|
obs_space = single_env.observation_space
|
|
act_space = single_env.action_space
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"episode_reward_mean": args.stop_reward,
|
|
"timesteps_total": args.stop_timesteps,
|
|
}
|
|
|
|
config = {
|
|
"env": "multi_agent_cartpole",
|
|
"multiagent": {
|
|
"policies": {
|
|
"pg_policy": (None, obs_space, act_space, {
|
|
"framework": args.framework,
|
|
}),
|
|
"random": (RandomPolicy, obs_space, act_space, {}),
|
|
},
|
|
"policy_mapping_fn": (
|
|
lambda agent_id: ["pg_policy", "random"][agent_id % 2]),
|
|
},
|
|
"framework": args.framework,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
}
|
|
|
|
results = tune.run("PG", config=config, stop=stop, verbose=1)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|