ray/rllib/agents/sac/sac.py
Sven Mika 510c850651
[RLlib] SAC add discrete action support. (#7320)
* Exploration API (+EpsilonGreedy sub-class).

* Exploration API (+EpsilonGreedy sub-class).

* Cleanup/LINT.

* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).

* Add `error` option to deprecation_warning().

* WIP.

* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.

* WIP.

* LINT.

* WIP.

* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.

* Fix bug in sampler.py in case Policy has self.exploration = None

* Update rllib/agents/dqn/dqn.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Update rllib/agents/trainer.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Change requests.

* LINT

* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set

* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).

* Update rllib/evaluation/worker_set.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Review fixes.

* Fix default value for DQN's exploration spec.

* LINT

* Fix recursion bug (wrong parent c'tor).

* Do not pass timestep to get_exploration_info.

* Update tf_policy.py

* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.

* Bug fix tf-action-dist

* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).

* Switch off exploration when getting action probs from off-policy-estimator's policy.

* LINT

* Fix test_checkpoint_restore.py.

* Deprecate all SAC exploration (unused) configs.

* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.

* WIP.

* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).

* WIP.

* Trigger re-test (flaky checkpoint-restore test).

* WIP.

* WIP.

* Add test case for deterministic action sampling in PPO.

* bug fix.

* Added deterministic test cases for different Agents.

* Fix problem with TupleActions in dynamic-tf-policy.

* Separate supported_spaces tests so they can be run separately for easier debugging.

* LINT.

* Fix autoregressive_action_dist.py test case.

* Re-test.

* Fix.

* Remove duplicate py_test rule from bazel.

* LINT.

* WIP.

* WIP.

* SAC fix.

* SAC fix.

* WIP.

* WIP.

* WIP.

* FIX 2 examples tests.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Renamed test file.

* WIP.

* Add unittest.main.

* Make action_dist_class mandatory.

* fix

* FIX.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix explorations test case (contextlib cannot find its own nullcontext??).

* Force torch to be installed for QMIX.

* LINT.

* Fix determine_tests_to_run.py.

* Fix determine_tests_to_run.py.

* WIP

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Rename some stuff.

* Rename some stuff.

* WIP.

* update.

* WIP.

* Gumbel Softmax Dist.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP

* WIP.

* WIP.

* Hypertune.

* Hypertune.

* Hypertune.

* Lock-in.

* Cleanup.

* LINT.

* Fix.

* Update rllib/policy/eager_tf_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Fix items from review comments.

* Add dm_tree to RLlib dependencies.

* Add dm_tree to RLlib dependencies.

* Fix DQN test cases ((Torch)Categorical).

* Fix wrong pip install.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
2020-03-06 10:37:12 -08:00

105 lines
3.8 KiB
Python

from ray.rllib.agents.trainer import with_common_config
from ray.rllib.agents.dqn.dqn import GenericOffPolicyTrainer
from ray.rllib.agents.sac.sac_policy import SACTFPolicy
OPTIMIZER_SHARED_CONFIGS = [
"buffer_size", "prioritized_replay", "prioritized_replay_alpha",
"prioritized_replay_beta", "prioritized_replay_eps", "sample_batch_size",
"train_batch_size", "learning_starts"
]
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_common_config({
# === Model ===
"twin_q": True,
"use_state_preprocessor": False,
# RLlib model options for the Q function
"Q_model": {
"hidden_activation": "relu",
"hidden_layer_sizes": (256, 256),
},
# RLlib model options for the policy function
"policy_model": {
"hidden_activation": "relu",
"hidden_layer_sizes": (256, 256),
},
# Unsquash actions to the upper and lower bounds of env's action space.
# Ignored for discrete action spaces.
"normalize_actions": True,
# === Learning ===
# Update the target by \tau * policy + (1-\tau) * target_policy.
"tau": 5e-3,
# Initial value to use for the entropy weight alpha.
"initial_alpha": 1.0,
# Target entropy lower bound. If "auto", will be set to -|A| (e.g. -2.0 for
# Discrete(2), -3.0 for Box(shape=(3,))).
# This is the inverse of reward scale, and will be optimized automatically.
"target_entropy": "auto",
# Disable setting done=True at end of episode.
"no_done_at_end": True,
# N-step target updates.
"n_step": 1,
# Number of env steps to optimize for before returning.
"timesteps_per_iteration": 100,
# === Replay buffer ===
# Size of the replay buffer. Note that if async_updates is set, then
# each worker will have a replay buffer of this size.
"buffer_size": int(1e6),
# If True prioritized replay buffer will be used.
"prioritized_replay": False,
"prioritized_replay_alpha": 0.6,
"prioritized_replay_beta": 0.4,
"prioritized_replay_eps": 1e-6,
"prioritized_replay_beta_annealing_timesteps": 20000,
"final_prioritized_replay_beta": 0.4,
"compress_observations": False,
# === Optimization ===
"optimization": {
"actor_learning_rate": 3e-4,
"critic_learning_rate": 3e-4,
"entropy_learning_rate": 3e-4,
},
# If not None, clip gradients during optimization at this value.
"grad_norm_clipping": None,
# How many steps of the model to sample before learning starts.
"learning_starts": 1500,
# Update the replay buffer with this many samples at once. Note that this
# setting applies per-worker if num_workers > 1.
"sample_batch_size": 1,
# Size of a batched sampled from replay buffer for training. Note that
# if async_updates is set, then each worker returns gradients for a
# batch of this size.
"train_batch_size": 256,
# Update the target network every `target_network_update_freq` steps.
"target_network_update_freq": 0,
# === Parallelism ===
# Whether to use a GPU for local optimization.
"num_gpus": 0,
# Number of workers for collecting samples with. This only makes sense
# to increase if your environment is particularly slow to sample, or if
# you"re using the Async or Ape-X optimizers.
"num_workers": 0,
# Whether to allocate GPUs for workers (if > 0).
"num_gpus_per_worker": 0,
# Whether to allocate CPUs for workers (if > 0).
"num_cpus_per_worker": 1,
# Whether to compute priorities on workers.
"worker_side_prioritization": False,
# Prevent iterations from going lower than this time span.
"min_iter_time_s": 1,
})
# __sphinx_doc_end__
# yapf: enable
SACTrainer = GenericOffPolicyTrainer.with_updates(
name="SAC",
default_config=DEFAULT_CONFIG,
default_policy=SACTFPolicy,
)