ray/rllib/agents/a3c/tests/test_a3c.py

92 lines
3.2 KiB
Python

import unittest
import ray
import ray.rllib.agents.a3c as a3c
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, \
LEARNER_STATS_KEY
from ray.rllib.utils.test_utils import check_compute_single_action, \
check_train_results, framework_iterator
class TestA3C(unittest.TestCase):
"""Sanity tests for A2C exec impl."""
def setUp(self):
ray.init(num_cpus=4)
def tearDown(self):
ray.shutdown()
def test_a3c_compilation(self):
"""Test whether an A3CTrainer can be built with both frameworks."""
config = a3c.DEFAULT_CONFIG.copy()
config["num_workers"] = 2
config["num_envs_per_worker"] = 2
num_iterations = 1
# Test against all frameworks.
for _ in framework_iterator(config, with_eager_tracing=True):
for env in ["CartPole-v1", "Pendulum-v1", "PongDeterministic-v0"]:
print("env={}".format(env))
config["model"]["use_lstm"] = env == "CartPole-v1"
trainer = a3c.A3CTrainer(config=config, env=env)
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
check_compute_single_action(
trainer, include_state=config["model"]["use_lstm"])
trainer.stop()
def test_a3c_entropy_coeff_schedule(self):
"""Test A3CTrainer entropy coeff schedule support."""
config = a3c.DEFAULT_CONFIG.copy()
config["num_workers"] = 1
config["num_envs_per_worker"] = 1
config["train_batch_size"] = 20
config["batch_mode"] = "truncate_episodes"
config["rollout_fragment_length"] = 10
config["timesteps_per_iteration"] = 20
# 0 metrics reporting delay, this makes sure timestep,
# which entropy coeff depends on, is updated after each worker rollout.
config["min_iter_time_s"] = 0
# Initial lr, doesn't really matter because of the schedule below.
config["entropy_coeff"] = 0.01
schedule = [
[0, 0.01],
[120, 0.0001],
]
config["entropy_coeff_schedule"] = schedule
def _step_n_times(trainer, n: int):
"""Step trainer n times.
Returns:
learning rate at the end of the execution.
"""
for _ in range(n):
results = trainer.train()
return results["info"][LEARNER_INFO][DEFAULT_POLICY_ID][
LEARNER_STATS_KEY]["entropy_coeff"]
# Test against all frameworks.
for _ in framework_iterator(config):
trainer = a3c.A3CTrainer(config=config, env="CartPole-v1")
coeff = _step_n_times(trainer, 1) # 20 timesteps
# Should be close to the starting coeff of 0.01
self.assertGreaterEqual(coeff, 0.005)
coeff = _step_n_times(trainer, 10) # 200 timesteps
# Should have annealed to the final coeff of 0.0001.
self.assertLessEqual(coeff, 0.00011)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))