ray/rllib/utils/numpy.py

294 lines
9.6 KiB
Python

import numpy as np
import tree # pip install dm_tree
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.typing import TensorType, Union
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
SMALL_NUMBER = 1e-6
# Some large int number. May be increased here, if needed.
LARGE_INTEGER = 100000000
# Min and Max outputs (clipped) from an NN-output layer interpreted as the
# log(x) of some x (e.g. a stddev of a normal
# distribution).
MIN_LOG_NN_OUTPUT = -20
MAX_LOG_NN_OUTPUT = 2
def huber_loss(x, delta=1.0):
"""Reference: https://en.wikipedia.org/wiki/Huber_loss"""
return np.where(
np.abs(x) < delta,
np.power(x, 2.0) * 0.5, delta * (np.abs(x) - 0.5 * delta))
def l2_loss(x):
"""Computes half the L2 norm of a tensor (w/o the sqrt): sum(x**2) / 2
Args:
x (np.ndarray): The input tensor.
Returns:
The l2-loss output according to the above formula given `x`.
"""
return np.sum(np.square(x)) / 2.0
def sigmoid(x, derivative=False):
"""
Returns the sigmoid function applied to x.
Alternatively, can return the derivative or the sigmoid function.
Args:
x (np.ndarray): The input to the sigmoid function.
derivative (bool): Whether to return the derivative or not.
Default: False.
Returns:
np.ndarray: The sigmoid function (or its derivative) applied to x.
"""
if derivative:
return x * (1 - x)
else:
return 1 / (1 + np.exp(-x))
def softmax(x, axis=-1):
"""
Returns the softmax values for x as:
S(xi) = e^xi / SUMj(e^xj), where j goes over all elements in x.
Args:
x (np.ndarray): The input to the softmax function.
axis (int): The axis along which to softmax.
Returns:
np.ndarray: The softmax over x.
"""
# x_exp = np.maximum(np.exp(x), SMALL_NUMBER)
x_exp = np.exp(x)
# return x_exp /
# np.maximum(np.sum(x_exp, axis, keepdims=True), SMALL_NUMBER)
return np.maximum(x_exp / np.sum(x_exp, axis, keepdims=True), SMALL_NUMBER)
def relu(x, alpha=0.0):
"""
Implementation of the leaky ReLU function:
y = x * alpha if x < 0 else x
Args:
x (np.ndarray): The input values.
alpha (float): A scaling ("leak") factor to use for negative x.
Returns:
np.ndarray: The leaky ReLU output for x.
"""
return np.maximum(x, x * alpha, x)
def one_hot(x: Union[TensorType, int],
depth: int = 0,
on_value: int = 1.0,
off_value: float = 0.0):
"""
One-hot utility function for numpy.
Thanks to qianyizhang:
https://gist.github.com/qianyizhang/07ee1c15cad08afb03f5de69349efc30.
Args:
x (TensorType): The input to be one-hot encoded.
depth (int): The max. number to be one-hot encoded (size of last rank).
on_value (float): The value to use for on. Default: 1.0.
off_value (float): The value to use for off. Default: 0.0.
Returns:
np.ndarray: The one-hot encoded equivalent of the input array.
"""
# Handle simple ints properly.
if isinstance(x, int):
x = np.array(x, dtype=np.int32)
# Handle torch arrays properly.
elif torch and isinstance(x, torch.Tensor):
x = x.numpy()
# Handle bool arrays correctly.
if x.dtype == np.bool_:
x = x.astype(np.int)
depth = 2
# If depth is not given, try to infer it from the values in the array.
if depth == 0:
depth = np.max(x) + 1
assert np.max(x) < depth, \
"ERROR: The max. index of `x` ({}) is larger than depth ({})!".\
format(np.max(x), depth)
shape = x.shape
# Python 2.7 compatibility, (*shape, depth) is not allowed.
shape_list = list(shape[:])
shape_list.append(depth)
out = np.ones(shape_list) * off_value
indices = []
for i in range(x.ndim):
tiles = [1] * x.ndim
s = [1] * x.ndim
s[i] = -1
r = np.arange(shape[i]).reshape(s)
if i > 0:
tiles[i - 1] = shape[i - 1]
r = np.tile(r, tiles)
indices.append(r)
indices.append(x)
out[tuple(indices)] = on_value
return out
def fc(x, weights, biases=None, framework=None):
"""
Calculates the outputs of a fully-connected (dense) layer given
weights/biases and an input.
Args:
x (np.ndarray): The input to the dense layer.
weights (np.ndarray): The weights matrix.
biases (Optional[np.ndarray]): The biases vector. All 0s if None.
framework (Optional[str]): An optional framework hint (to figure out,
e.g. whether to transpose torch weight matrices).
Returns:
The dense layer's output.
"""
def map_(data, transpose=False):
if torch:
if isinstance(data, torch.Tensor):
data = data.cpu().detach().numpy()
if tf and tf.executing_eagerly():
if isinstance(data, tf.Variable):
data = data.numpy()
if transpose:
data = np.transpose(data)
return data
x = map_(x)
# Torch stores matrices in transpose (faster for backprop).
transpose = (framework == "torch" and (x.shape[1] != weights.shape[0]
and x.shape[1] == weights.shape[1]))
weights = map_(weights, transpose=transpose)
biases = map_(biases)
return np.matmul(x, weights) + (0.0 if biases is None else biases)
def lstm(x,
weights,
biases=None,
initial_internal_states=None,
time_major=False,
forget_bias=1.0):
"""
Calculates the outputs of an LSTM layer given weights/biases,
internal_states, and input.
Args:
x (np.ndarray): The inputs to the LSTM layer including time-rank
(0th if time-major, else 1st) and the batch-rank
(1st if time-major, else 0th).
weights (np.ndarray): The weights matrix.
biases (Optional[np.ndarray]): The biases vector. All 0s if None.
initial_internal_states (Optional[np.ndarray]): The initial internal
states to pass into the layer. All 0s if None.
time_major (bool): Whether to use time-major or not. Default: False.
forget_bias (float): Gets added to first sigmoid (forget gate) output.
Default: 1.0.
Returns:
Tuple:
- The LSTM layer's output.
- Tuple: Last (c-state, h-state).
"""
sequence_length = x.shape[0 if time_major else 1]
batch_size = x.shape[1 if time_major else 0]
units = weights.shape[1] // 4 # 4 internal layers (3x sigmoid, 1x tanh)
if initial_internal_states is None:
c_states = np.zeros(shape=(batch_size, units))
h_states = np.zeros(shape=(batch_size, units))
else:
c_states = initial_internal_states[0]
h_states = initial_internal_states[1]
# Create a placeholder for all n-time step outputs.
if time_major:
unrolled_outputs = np.zeros(shape=(sequence_length, batch_size, units))
else:
unrolled_outputs = np.zeros(shape=(batch_size, sequence_length, units))
# Push the batch 4 times through the LSTM cell and capture the outputs plus
# the final h- and c-states.
for t in range(sequence_length):
input_matrix = x[t, :, :] if time_major else x[:, t, :]
input_matrix = np.concatenate((input_matrix, h_states), axis=1)
input_matmul_matrix = np.matmul(input_matrix, weights) + biases
# Forget gate (3rd slot in tf output matrix). Add static forget bias.
sigmoid_1 = sigmoid(input_matmul_matrix[:, units * 2:units * 3] +
forget_bias)
c_states = np.multiply(c_states, sigmoid_1)
# Add gate (1st and 2nd slots in tf output matrix).
sigmoid_2 = sigmoid(input_matmul_matrix[:, 0:units])
tanh_3 = np.tanh(input_matmul_matrix[:, units:units * 2])
c_states = np.add(c_states, np.multiply(sigmoid_2, tanh_3))
# Output gate (last slot in tf output matrix).
sigmoid_4 = sigmoid(input_matmul_matrix[:, units * 3:units * 4])
h_states = np.multiply(sigmoid_4, np.tanh(c_states))
# Store this output time-slice.
if time_major:
unrolled_outputs[t, :, :] = h_states
else:
unrolled_outputs[:, t, :] = h_states
return unrolled_outputs, (c_states, h_states)
# TODO: (sven) this will replace `TorchPolicy._convert_to_non_torch_tensor()`.
def convert_to_numpy(x, reduce_floats=False):
"""Converts values in `stats` to non-Tensor numpy or python types.
Args:
stats (any): Any (possibly nested) struct, the values in which will be
converted and returned as a new struct with all torch/tf tensors
being converted to numpy types.
reduce_floats (bool): Whether to reduce all float64 data into float32
automatically.
Returns:
Any: A new struct with the same structure as `stats`, but with all
values converted to numpy arrays (on CPU).
"""
# The mapping function used to numpyize torch/tf Tensors (and move them
# to the CPU beforehand).
def mapping(item):
if torch and isinstance(item, torch.Tensor):
ret = item.cpu().item() if len(item.size()) == 0 else \
item.cpu().detach().numpy()
elif tf and isinstance(item, tf.Tensor):
assert tf.executing_eagerly()
ret = item.cpu().numpy()
else:
ret = item
if reduce_floats and isinstance(ret, np.ndarray) and \
ret.dtype == np.float64:
ret = ret.astype(np.float32)
return ret
return tree.map_structure(mapping, x)