mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
157 lines
6.7 KiB
Python
157 lines
6.7 KiB
Python
from gym.spaces import Discrete, Box, MultiDiscrete, Space
|
|
import numpy as np
|
|
import tree # pip install dm_tree
|
|
from typing import Union, Optional
|
|
|
|
from ray.rllib.models.action_dist import ActionDistribution
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.exploration.exploration import Exploration
|
|
from ray.rllib.utils import force_tuple
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
|
|
TensorType
|
|
from ray.rllib.utils.spaces.simplex import Simplex
|
|
from ray.rllib.utils.spaces.space_utils import get_base_struct_from_space
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
class Random(Exploration):
|
|
"""A random action selector (deterministic/greedy for explore=False).
|
|
|
|
If explore=True, returns actions randomly from `self.action_space` (via
|
|
Space.sample()).
|
|
If explore=False, returns the greedy/max-likelihood action.
|
|
"""
|
|
|
|
def __init__(self, action_space: Space, *, model: ModelV2,
|
|
framework: Optional[str], **kwargs):
|
|
"""Initialize a Random Exploration object.
|
|
|
|
Args:
|
|
action_space (Space): The gym action space used by the environment.
|
|
framework (Optional[str]): One of None, "tf", "tfe", "torch".
|
|
"""
|
|
super().__init__(
|
|
action_space=action_space,
|
|
model=model,
|
|
framework=framework,
|
|
**kwargs)
|
|
|
|
self.action_space_struct = get_base_struct_from_space(
|
|
self.action_space)
|
|
|
|
@override(Exploration)
|
|
def get_exploration_action(self,
|
|
*,
|
|
action_distribution: ActionDistribution,
|
|
timestep: Union[int, TensorType],
|
|
explore: bool = True):
|
|
# Instantiate the distribution object.
|
|
if self.framework in ["tf2", "tf", "tfe"]:
|
|
return self.get_tf_exploration_action_op(action_distribution,
|
|
explore)
|
|
else:
|
|
return self.get_torch_exploration_action(action_distribution,
|
|
explore)
|
|
|
|
def get_tf_exploration_action_op(
|
|
self, action_dist: ActionDistribution,
|
|
explore: Optional[Union[bool, TensorType]]):
|
|
def true_fn():
|
|
batch_size = 1
|
|
req = force_tuple(
|
|
action_dist.required_model_output_shape(
|
|
self.action_space, getattr(self.model, "model_config",
|
|
None)))
|
|
# Add a batch dimension?
|
|
if len(action_dist.inputs.shape) == len(req) + 1:
|
|
batch_size = tf.shape(action_dist.inputs)[0]
|
|
|
|
# Function to produce random samples from primitive space
|
|
# components: (Multi)Discrete or Box.
|
|
def random_component(component):
|
|
if isinstance(component, Discrete):
|
|
return tf.random.uniform(
|
|
shape=(batch_size, ) + component.shape,
|
|
maxval=component.n,
|
|
dtype=component.dtype)
|
|
elif isinstance(component, MultiDiscrete):
|
|
return tf.concat(
|
|
[
|
|
tf.random.uniform(
|
|
shape=(batch_size, 1),
|
|
maxval=n,
|
|
dtype=component.dtype) for n in component.nvec
|
|
],
|
|
axis=1)
|
|
elif isinstance(component, Box):
|
|
if component.bounded_above.all() and \
|
|
component.bounded_below.all():
|
|
if component.dtype.name.startswith("int"):
|
|
return tf.random.uniform(
|
|
shape=(batch_size, ) + component.shape,
|
|
minval=component.low.flat[0],
|
|
maxval=component.high.flat[0],
|
|
dtype=component.dtype)
|
|
else:
|
|
return tf.random.uniform(
|
|
shape=(batch_size, ) + component.shape,
|
|
minval=component.low,
|
|
maxval=component.high,
|
|
dtype=component.dtype)
|
|
else:
|
|
return tf.random.normal(
|
|
shape=(batch_size, ) + component.shape,
|
|
dtype=component.dtype)
|
|
else:
|
|
assert isinstance(component, Simplex), \
|
|
"Unsupported distribution component '{}' for random " \
|
|
"sampling!".format(component)
|
|
return tf.nn.softmax(
|
|
tf.random.uniform(
|
|
shape=(batch_size, ) + component.shape,
|
|
minval=0.0,
|
|
maxval=1.0,
|
|
dtype=component.dtype))
|
|
|
|
actions = tree.map_structure(random_component,
|
|
self.action_space_struct)
|
|
return actions
|
|
|
|
def false_fn():
|
|
return action_dist.deterministic_sample()
|
|
|
|
action = tf.cond(
|
|
pred=tf.constant(explore, dtype=tf.bool)
|
|
if isinstance(explore, bool) else explore,
|
|
true_fn=true_fn,
|
|
false_fn=false_fn)
|
|
|
|
# TODO(sven): Move into (deterministic_)sample(logp=True|False)
|
|
batch_size = tf.shape(tree.flatten(action)[0])[0]
|
|
logp = tf.zeros(shape=(batch_size, ), dtype=tf.float32)
|
|
return action, logp
|
|
|
|
def get_torch_exploration_action(self, action_dist: ActionDistribution,
|
|
explore: bool):
|
|
if explore:
|
|
req = force_tuple(
|
|
action_dist.required_model_output_shape(
|
|
self.action_space, getattr(self.model, "model_config",
|
|
None)))
|
|
# Add a batch dimension?
|
|
if len(action_dist.inputs.shape) == len(req) + 1:
|
|
batch_size = action_dist.inputs.shape[0]
|
|
a = np.stack(
|
|
[self.action_space.sample() for _ in range(batch_size)])
|
|
else:
|
|
a = self.action_space.sample()
|
|
# Convert action to torch tensor.
|
|
action = torch.from_numpy(a).to(self.device)
|
|
else:
|
|
action = action_dist.deterministic_sample()
|
|
logp = torch.zeros(
|
|
(action.size()[0], ), dtype=torch.float32, device=self.device)
|
|
return action, logp
|