ray/rllib/models/catalog.py

871 lines
38 KiB
Python

from functools import partial
import gym
from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple
import logging
import numpy as np
import tree # pip install dm_tree
from typing import List, Optional, Type, Union
from ray.tune.registry import RLLIB_MODEL, RLLIB_PREPROCESSOR, \
RLLIB_ACTION_DIST, _global_registry
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.jax.jax_action_dist import JAXCategorical
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.preprocessors import get_preprocessor, Preprocessor
from ray.rllib.models.tf.tf_action_dist import Categorical, \
Deterministic, DiagGaussian, Dirichlet, \
MultiActionDistribution, MultiCategorical
from ray.rllib.models.torch.torch_action_dist import TorchCategorical, \
TorchDeterministic, TorchDiagGaussian, \
TorchMultiActionDistribution, TorchMultiCategorical
from ray.rllib.utils.annotations import DeveloperAPI, PublicAPI
from ray.rllib.utils.deprecation import DEPRECATED_VALUE, \
deprecation_warning
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.spaces.simplex import Simplex
from ray.rllib.utils.spaces.space_utils import flatten_space
from ray.rllib.utils.typing import ModelConfigDict, TensorType
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
logger = logging.getLogger(__name__)
# yapf: disable
# __sphinx_doc_begin__
MODEL_DEFAULTS: ModelConfigDict = {
# Experimental flag.
# If True, try to use a native (tf.keras.Model or torch.Module) default
# model instead of our built-in ModelV2 defaults.
# If False (default), use "classic" ModelV2 default models.
# Note that this currently only works for framework != torch AND fully
# connected default networks.
"_use_default_native_models": False,
# === Built-in options ===
# FullyConnectedNetwork (tf and torch): rllib.models.tf|torch.fcnet.py
# These are used if no custom model is specified and the input space is 1D.
# Number of hidden layers to be used.
"fcnet_hiddens": [256, 256],
# Activation function descriptor.
# Supported values are: "tanh", "relu", "swish" (or "silu"),
# "linear" (or None).
"fcnet_activation": "tanh",
# VisionNetwork (tf and torch): rllib.models.tf|torch.visionnet.py
# These are used if no custom model is specified and the input space is 2D.
# Filter config: List of [out_channels, kernel, stride] for each filter.
# Example:
# Use None for making RLlib try to find a default filter setup given the
# observation space.
"conv_filters": None,
# Activation function descriptor.
# Supported values are: "tanh", "relu", "swish" (or "silu"),
# "linear" (or None).
"conv_activation": "relu",
# Some default models support a final FC stack of n Dense layers with given
# activation:
# - Complex observation spaces: Image components are fed through
# VisionNets, flat Boxes are left as-is, Discrete are one-hot'd, then
# everything is concated and pushed through this final FC stack.
# - VisionNets (CNNs), e.g. after the CNN stack, there may be
# additional Dense layers.
# - FullyConnectedNetworks will have this additional FCStack as well
# (that's why it's empty by default).
"post_fcnet_hiddens": [],
"post_fcnet_activation": "relu",
# For DiagGaussian action distributions, make the second half of the model
# outputs floating bias variables instead of state-dependent. This only
# has an effect is using the default fully connected net.
"free_log_std": False,
# Whether to skip the final linear layer used to resize the hidden layer
# outputs to size `num_outputs`. If True, then the last hidden layer
# should already match num_outputs.
"no_final_linear": False,
# Whether layers should be shared for the value function.
"vf_share_layers": True,
# == LSTM ==
# Whether to wrap the model with an LSTM.
"use_lstm": False,
# Max seq len for training the LSTM, defaults to 20.
"max_seq_len": 20,
# Size of the LSTM cell.
"lstm_cell_size": 256,
# Whether to feed a_{t-1} to LSTM (one-hot encoded if discrete).
"lstm_use_prev_action": False,
# Whether to feed r_{t-1} to LSTM.
"lstm_use_prev_reward": False,
# Whether the LSTM is time-major (TxBx..) or batch-major (BxTx..).
"_time_major": False,
# == Attention Nets (experimental: torch-version is untested) ==
# Whether to use a GTrXL ("Gru transformer XL"; attention net) as the
# wrapper Model around the default Model.
"use_attention": False,
# The number of transformer units within GTrXL.
# A transformer unit in GTrXL consists of a) MultiHeadAttention module and
# b) a position-wise MLP.
"attention_num_transformer_units": 1,
# The input and output size of each transformer unit.
"attention_dim": 64,
# The number of attention heads within the MultiHeadAttention units.
"attention_num_heads": 1,
# The dim of a single head (within the MultiHeadAttention units).
"attention_head_dim": 32,
# The memory sizes for inference and training.
"attention_memory_inference": 50,
"attention_memory_training": 50,
# The output dim of the position-wise MLP.
"attention_position_wise_mlp_dim": 32,
# The initial bias values for the 2 GRU gates within a transformer unit.
"attention_init_gru_gate_bias": 2.0,
# Whether to feed a_{t-n:t-1} to GTrXL (one-hot encoded if discrete).
"attention_use_n_prev_actions": 0,
# Whether to feed r_{t-n:t-1} to GTrXL.
"attention_use_n_prev_rewards": 0,
# == Atari ==
# Which framestacking size to use for Atari envs.
# "auto": Use a value of 4, but only if the env is an Atari env.
# > 1: Use the trajectory view API in the default VisionNets to request the
# last n observations (single, grayscaled 84x84 image frames) as
# inputs. The time axis in the so provided observation tensors
# will come right after the batch axis (channels first format),
# e.g. BxTx84x84, where T=num_framestacks.
# 0 or 1: No framestacking used.
# Use the deprecated `framestack=True`, to disable the above behavor and to
# enable legacy stacking behavior (w/o trajectory view API) instead.
"num_framestacks": "auto",
# Final resized frame dimension
"dim": 84,
# (deprecated) Converts ATARI frame to 1 Channel Grayscale image
"grayscale": False,
# (deprecated) Changes frame to range from [-1, 1] if true
"zero_mean": True,
# === Options for custom models ===
# Name of a custom model to use
"custom_model": None,
# Extra options to pass to the custom classes. These will be available to
# the Model's constructor in the model_config field. Also, they will be
# attempted to be passed as **kwargs to ModelV2 models. For an example,
# see rllib/models/[tf|torch]/attention_net.py.
"custom_model_config": {},
# Name of a custom action distribution to use.
"custom_action_dist": None,
# Custom preprocessors are deprecated. Please use a wrapper class around
# your environment instead to preprocess observations.
"custom_preprocessor": None,
# Deprecated keys:
# Use `lstm_use_prev_action` or `lstm_use_prev_reward` instead.
"lstm_use_prev_action_reward": DEPRECATED_VALUE,
# Use `num_framestacks` (int) instead.
"framestack": True,
}
# __sphinx_doc_end__
# yapf: enable
@PublicAPI
class ModelCatalog:
"""Registry of models, preprocessors, and action distributions for envs.
Examples:
>>> prep = ModelCatalog.get_preprocessor(env)
>>> observation = prep.transform(raw_observation)
>>> dist_class, dist_dim = ModelCatalog.get_action_dist(
... env.action_space, {})
>>> model = ModelCatalog.get_model_v2(
... obs_space, action_space, num_outputs, options)
>>> dist = dist_class(model.outputs, model)
>>> action = dist.sample()
"""
@staticmethod
@DeveloperAPI
def get_action_dist(
action_space: gym.Space,
config: ModelConfigDict,
dist_type: Optional[Union[str, Type[ActionDistribution]]] = None,
framework: str = "tf",
**kwargs) -> (type, int):
"""Returns a distribution class and size for the given action space.
Args:
action_space (Space): Action space of the target gym env.
config (Optional[dict]): Optional model config.
dist_type (Optional[Union[str, Type[ActionDistribution]]]):
Identifier of the action distribution (str) interpreted as a
hint or the actual ActionDistribution class to use.
framework (str): One of "tf2", "tf", "tfe", "torch", or "jax".
kwargs (dict): Optional kwargs to pass on to the Distribution's
constructor.
Returns:
Tuple:
- dist_class (ActionDistribution): Python class of the
distribution.
- dist_dim (int): The size of the input vector to the
distribution.
"""
dist_cls = None
config = config or MODEL_DEFAULTS
# Custom distribution given.
if config.get("custom_action_dist"):
custom_action_config = config.copy()
action_dist_name = custom_action_config.pop("custom_action_dist")
logger.debug(
"Using custom action distribution {}".format(action_dist_name))
dist_cls = _global_registry.get(RLLIB_ACTION_DIST,
action_dist_name)
return ModelCatalog._get_multi_action_distribution(
dist_cls, action_space, custom_action_config, framework)
# Dist_type is given directly as a class.
elif type(dist_type) is type and \
issubclass(dist_type, ActionDistribution) and \
dist_type not in (
MultiActionDistribution, TorchMultiActionDistribution):
dist_cls = dist_type
# Box space -> DiagGaussian OR Deterministic.
elif isinstance(action_space, Box):
if action_space.dtype.name.startswith("int"):
low_ = np.min(action_space.low)
high_ = np.max(action_space.high)
assert np.all(action_space.low == low_)
assert np.all(action_space.high == high_)
dist_cls = TorchMultiCategorical if framework == "torch" \
else MultiCategorical
num_cats = int(np.product(action_space.shape))
return partial(
dist_cls,
input_lens=[high_ - low_ + 1 for _ in range(num_cats)],
action_space=action_space), num_cats * (high_ - low_ + 1)
else:
if len(action_space.shape) > 1:
raise UnsupportedSpaceException(
"Action space has multiple dimensions "
"{}. ".format(action_space.shape) +
"Consider reshaping this into a single dimension, "
"using a custom action distribution, "
"using a Tuple action space, or the multi-agent API.")
# TODO(sven): Check for bounds and return SquashedNormal, etc..
if dist_type is None:
dist_cls = TorchDiagGaussian if framework == "torch" \
else DiagGaussian
elif dist_type == "deterministic":
dist_cls = TorchDeterministic if framework == "torch" \
else Deterministic
# Discrete Space -> Categorical.
elif isinstance(action_space, Discrete):
dist_cls = TorchCategorical if framework == "torch" else \
JAXCategorical if framework == "jax" else Categorical
# Tuple/Dict Spaces -> MultiAction.
elif dist_type in (MultiActionDistribution,
TorchMultiActionDistribution) or \
isinstance(action_space, (Tuple, Dict)):
return ModelCatalog._get_multi_action_distribution(
(MultiActionDistribution
if framework == "tf" else TorchMultiActionDistribution),
action_space, config, framework)
# Simplex -> Dirichlet.
elif isinstance(action_space, Simplex):
if framework == "torch":
# TODO(sven): implement
raise NotImplementedError(
"Simplex action spaces not supported for torch.")
dist_cls = Dirichlet
# MultiDiscrete -> MultiCategorical.
elif isinstance(action_space, MultiDiscrete):
dist_cls = TorchMultiCategorical if framework == "torch" else \
MultiCategorical
return partial(dist_cls, input_lens=action_space.nvec), \
int(sum(action_space.nvec))
# Unknown type -> Error.
else:
raise NotImplementedError("Unsupported args: {} {}".format(
action_space, dist_type))
return dist_cls, dist_cls.required_model_output_shape(
action_space, config)
@staticmethod
@DeveloperAPI
def get_action_shape(action_space: gym.Space,
framework: str = "tf") -> (np.dtype, List[int]):
"""Returns action tensor dtype and shape for the action space.
Args:
action_space (Space): Action space of the target gym env.
framework (str): The framework identifier. One of "tf" or "torch".
Returns:
(dtype, shape): Dtype and shape of the actions tensor.
"""
dl_lib = torch if framework == "torch" else tf
if isinstance(action_space, Discrete):
return action_space.dtype, (None, )
elif isinstance(action_space, (Box, Simplex)):
return dl_lib.float32, (None, ) + action_space.shape
elif isinstance(action_space, MultiDiscrete):
return action_space.dtype, (None, ) + action_space.shape
elif isinstance(action_space, (Tuple, Dict)):
flat_action_space = flatten_space(action_space)
size = 0
all_discrete = True
for i in range(len(flat_action_space)):
if isinstance(flat_action_space[i], Discrete):
size += 1
else:
all_discrete = False
size += np.product(flat_action_space[i].shape)
size = int(size)
return dl_lib.int64 if all_discrete else dl_lib.float32, \
(None, size)
else:
raise NotImplementedError(
"Action space {} not supported".format(action_space))
@staticmethod
@DeveloperAPI
def get_action_placeholder(action_space: gym.Space,
name: str = "action") -> TensorType:
"""Returns an action placeholder consistent with the action space
Args:
action_space (Space): Action space of the target gym env.
name (str): An optional string to name the placeholder by.
Default: "action".
Returns:
action_placeholder (Tensor): A placeholder for the actions
"""
dtype, shape = ModelCatalog.get_action_shape(
action_space, framework="tf")
return tf1.placeholder(dtype, shape=shape, name=name)
@staticmethod
@DeveloperAPI
def get_model_v2(obs_space: gym.Space,
action_space: gym.Space,
num_outputs: int,
model_config: ModelConfigDict,
framework: str = "tf",
name: str = "default_model",
model_interface: type = None,
default_model: type = None,
**model_kwargs) -> ModelV2:
"""Returns a suitable model compatible with given spaces and output.
Args:
obs_space (Space): Observation space of the target gym env. This
may have an `original_space` attribute that specifies how to
unflatten the tensor into a ragged tensor.
action_space (Space): Action space of the target gym env.
num_outputs (int): The size of the output vector of the model.
model_config (ModelConfigDict): The "model" sub-config dict
within the Trainer's config dict.
framework (str): One of "tf2", "tf", "tfe", "torch", or "jax".
name (str): Name (scope) for the model.
model_interface (cls): Interface required for the model
default_model (cls): Override the default class for the model. This
only has an effect when not using a custom model
model_kwargs (dict): args to pass to the ModelV2 constructor
Returns:
model (ModelV2): Model to use for the policy.
"""
# Validate the given config dict.
ModelCatalog._validate_config(config=model_config, framework=framework)
if model_config.get("custom_model"):
# Allow model kwargs to be overridden / augmented by
# custom_model_config.
customized_model_kwargs = dict(
model_kwargs, **model_config.get("custom_model_config", {}))
if isinstance(model_config["custom_model"], type):
model_cls = model_config["custom_model"]
else:
model_cls = _global_registry.get(RLLIB_MODEL,
model_config["custom_model"])
# Only allow ModelV2 or native keras Models.
if not issubclass(model_cls, ModelV2):
if framework not in ["tf", "tf2", "tfe"] or \
not issubclass(model_cls, tf.keras.Model):
raise ValueError(
"`model_cls` must be a ModelV2 sub-class, but is"
" {}!".format(model_cls))
logger.info("Wrapping {} as {}".format(model_cls, model_interface))
model_cls = ModelCatalog._wrap_if_needed(model_cls,
model_interface)
if framework in ["tf2", "tf", "tfe"]:
# Try wrapping custom model with LSTM/attention, if required.
if model_config.get("use_lstm") or \
model_config.get("use_attention"):
from ray.rllib.models.tf.attention_net import \
AttentionWrapper
from ray.rllib.models.tf.recurrent_net import LSTMWrapper
wrapped_cls = model_cls
forward = wrapped_cls.forward
model_cls = ModelCatalog._wrap_if_needed(
wrapped_cls, LSTMWrapper
if model_config.get("use_lstm") else AttentionWrapper)
model_cls._wrapped_forward = forward
# Obsolete: Track and warn if vars were created but not
# registered. Only still do this, if users do register their
# variables. If not (which they shouldn't), don't check here.
created = set()
def track_var_creation(next_creator, **kw):
v = next_creator(**kw)
created.add(v)
return v
with tf.variable_creator_scope(track_var_creation):
if issubclass(model_cls, tf.keras.Model):
instance = model_cls(
input_space=obs_space,
action_space=action_space,
num_outputs=num_outputs,
name=name,
**customized_model_kwargs,
)
else:
# Try calling with kwargs first (custom ModelV2 should
# accept these as kwargs, not get them from
# config["custom_model_config"] anymore).
try:
instance = model_cls(
obs_space,
action_space,
num_outputs,
model_config,
name,
**customized_model_kwargs,
)
except TypeError as e:
# Keyword error: Try old way w/o kwargs.
if "__init__() got an unexpected " in e.args[0]:
instance = model_cls(
obs_space,
action_space,
num_outputs,
model_config,
name,
**model_kwargs,
)
logger.warning(
"Custom ModelV2 should accept all custom "
"options as **kwargs, instead of expecting"
" them in config['custom_model_config']!")
# Other error -> re-raise.
else:
raise e
# User still registered TFModelV2's variables: Check, whether
# ok.
registered = []
if not isinstance(instance, tf.keras.Model):
registered = set(instance.var_list)
if len(registered) > 0:
not_registered = set()
for var in created:
if var not in registered:
not_registered.add(var)
if not_registered:
raise ValueError(
"It looks like you are still using "
"`{}.register_variables()` to register your "
"model's weights. This is no longer required, but "
"if you are still calling this method at least "
"once, you must make sure to register all created "
"variables properly. The missing variables are {},"
" and you only registered {}. "
"Did you forget to call `register_variables()` on "
"some of the variables in question?".format(
instance, not_registered, registered))
elif framework == "torch":
# Try wrapping custom model with LSTM/attention, if required.
if model_config.get("use_lstm") or \
model_config.get("use_attention"):
from ray.rllib.models.torch.attention_net import \
AttentionWrapper
from ray.rllib.models.torch.recurrent_net import \
LSTMWrapper
wrapped_cls = model_cls
forward = wrapped_cls.forward
model_cls = ModelCatalog._wrap_if_needed(
wrapped_cls, LSTMWrapper
if model_config.get("use_lstm") else AttentionWrapper)
model_cls._wrapped_forward = forward
# PyTorch automatically tracks nn.Modules inside the parent
# nn.Module's constructor.
# Try calling with kwargs first (custom ModelV2 should
# accept these as kwargs, not get them from
# config["custom_model_config"] anymore).
try:
instance = model_cls(obs_space, action_space, num_outputs,
model_config, name,
**customized_model_kwargs)
except TypeError as e:
# Keyword error: Try old way w/o kwargs.
if "__init__() got an unexpected " in e.args[0]:
instance = model_cls(obs_space, action_space,
num_outputs, model_config, name,
**model_kwargs)
logger.warning(
"Custom ModelV2 should accept all custom "
"options as **kwargs, instead of expecting"
" them in config['custom_model_config']!")
# Other error -> re-raise.
else:
raise e
else:
raise NotImplementedError(
"`framework` must be 'tf2|tf|tfe|torch', but is "
"{}!".format(framework))
return instance
# Find a default TFModelV2 and wrap with model_interface.
if framework in ["tf", "tfe", "tf2"]:
v2_class = None
# Try to get a default v2 model.
if not model_config.get("custom_model"):
v2_class = default_model or ModelCatalog._get_v2_model_class(
obs_space, model_config, framework=framework)
if not v2_class:
raise ValueError("ModelV2 class could not be determined!")
if model_config.get("use_lstm") or \
model_config.get("use_attention"):
from ray.rllib.models.tf.attention_net import \
AttentionWrapper
from ray.rllib.models.tf.recurrent_net import LSTMWrapper
wrapped_cls = v2_class
forward = wrapped_cls.forward
if model_config.get("use_lstm"):
v2_class = ModelCatalog._wrap_if_needed(
wrapped_cls, LSTMWrapper)
else:
v2_class = ModelCatalog._wrap_if_needed(
wrapped_cls, AttentionWrapper)
v2_class._wrapped_forward = forward
# Wrap in the requested interface.
wrapper = ModelCatalog._wrap_if_needed(v2_class, model_interface)
if issubclass(wrapper, tf.keras.Model):
return wrapper(
input_space=obs_space,
action_space=action_space,
num_outputs=num_outputs,
name=name,
**dict(model_kwargs, **model_config),
)
return wrapper(obs_space, action_space, num_outputs, model_config,
name, **model_kwargs)
# Find a default TorchModelV2 and wrap with model_interface.
elif framework == "torch":
# Try to get a default v2 model.
if not model_config.get("custom_model"):
v2_class = default_model or ModelCatalog._get_v2_model_class(
obs_space, model_config, framework=framework)
if not v2_class:
raise ValueError("ModelV2 class could not be determined!")
if model_config.get("use_lstm") or \
model_config.get("use_attention"):
from ray.rllib.models.torch.attention_net import \
AttentionWrapper
from ray.rllib.models.torch.recurrent_net import LSTMWrapper
wrapped_cls = v2_class
forward = wrapped_cls.forward
if model_config.get("use_lstm"):
v2_class = ModelCatalog._wrap_if_needed(
wrapped_cls, LSTMWrapper)
else:
v2_class = ModelCatalog._wrap_if_needed(
wrapped_cls, AttentionWrapper)
v2_class._wrapped_forward = forward
# Wrap in the requested interface.
wrapper = ModelCatalog._wrap_if_needed(v2_class, model_interface)
return wrapper(obs_space, action_space, num_outputs, model_config,
name, **model_kwargs)
# Find a default JAXModelV2 and wrap with model_interface.
elif framework == "jax":
v2_class = \
default_model or ModelCatalog._get_v2_model_class(
obs_space, model_config, framework=framework)
# Wrap in the requested interface.
wrapper = ModelCatalog._wrap_if_needed(v2_class, model_interface)
return wrapper(obs_space, action_space, num_outputs, model_config,
name, **model_kwargs)
else:
raise NotImplementedError(
"`framework` must be 'tf2|tf|tfe|torch', but is "
"{}!".format(framework))
@staticmethod
@DeveloperAPI
def get_preprocessor(env: gym.Env,
options: Optional[dict] = None) -> Preprocessor:
"""Returns a suitable preprocessor for the given env.
This is a wrapper for get_preprocessor_for_space().
"""
return ModelCatalog.get_preprocessor_for_space(env.observation_space,
options)
@staticmethod
@DeveloperAPI
def get_preprocessor_for_space(observation_space: gym.Space,
options: dict = None) -> Preprocessor:
"""Returns a suitable preprocessor for the given observation space.
Args:
observation_space (Space): The input observation space.
options (dict): Options to pass to the preprocessor.
Returns:
preprocessor (Preprocessor): Preprocessor for the observations.
"""
options = options or MODEL_DEFAULTS
for k in options.keys():
if k not in MODEL_DEFAULTS:
raise Exception("Unknown config key `{}`, all keys: {}".format(
k, list(MODEL_DEFAULTS)))
if options.get("custom_preprocessor"):
preprocessor = options["custom_preprocessor"]
logger.info("Using custom preprocessor {}".format(preprocessor))
logger.warning(
"DeprecationWarning: Custom preprocessors are deprecated, "
"since they sometimes conflict with the built-in "
"preprocessors for handling complex observation spaces. "
"Please use wrapper classes around your environment "
"instead of preprocessors.")
prep = _global_registry.get(RLLIB_PREPROCESSOR, preprocessor)(
observation_space, options)
else:
cls = get_preprocessor(observation_space)
prep = cls(observation_space, options)
logger.debug("Created preprocessor {}: {} -> {}".format(
prep, observation_space, prep.shape))
return prep
@staticmethod
@PublicAPI
def register_custom_preprocessor(preprocessor_name: str,
preprocessor_class: type) -> None:
"""Register a custom preprocessor class by name.
The preprocessor can be later used by specifying
{"custom_preprocessor": preprocesor_name} in the model config.
Args:
preprocessor_name (str): Name to register the preprocessor under.
preprocessor_class (type): Python class of the preprocessor.
"""
_global_registry.register(RLLIB_PREPROCESSOR, preprocessor_name,
preprocessor_class)
@staticmethod
@PublicAPI
def register_custom_model(model_name: str, model_class: type) -> None:
"""Register a custom model class by name.
The model can be later used by specifying {"custom_model": model_name}
in the model config.
Args:
model_name (str): Name to register the model under.
model_class (type): Python class of the model.
"""
if issubclass(model_class, tf.keras.Model):
deprecation_warning(old="register_custom_model", error=False)
_global_registry.register(RLLIB_MODEL, model_name, model_class)
@staticmethod
@PublicAPI
def register_custom_action_dist(action_dist_name: str,
action_dist_class: type) -> None:
"""Register a custom action distribution class by name.
The model can be later used by specifying
{"custom_action_dist": action_dist_name} in the model config.
Args:
model_name (str): Name to register the action distribution under.
model_class (type): Python class of the action distribution.
"""
_global_registry.register(RLLIB_ACTION_DIST, action_dist_name,
action_dist_class)
@staticmethod
def _wrap_if_needed(model_cls: type, model_interface: type) -> type:
if not model_interface or issubclass(model_cls, model_interface):
return model_cls
assert issubclass(model_cls, ModelV2), model_cls
class wrapper(model_interface, model_cls):
pass
name = "{}_as_{}".format(model_cls.__name__, model_interface.__name__)
wrapper.__name__ = name
wrapper.__qualname__ = name
return wrapper
@staticmethod
def _get_v2_model_class(input_space: gym.Space,
model_config: ModelConfigDict,
framework: str = "tf") -> Type[ModelV2]:
VisionNet = None
ComplexNet = None
Keras_FCNet = None
if framework in ["tf2", "tf", "tfe"]:
from ray.rllib.models.tf.fcnet import \
FullyConnectedNetwork as FCNet, \
Keras_FullyConnectedNetwork as Keras_FCNet
from ray.rllib.models.tf.visionnet import \
VisionNetwork as VisionNet
from ray.rllib.models.tf.complex_input_net import \
ComplexInputNetwork as ComplexNet
elif framework == "torch":
from ray.rllib.models.torch.fcnet import (FullyConnectedNetwork as
FCNet)
from ray.rllib.models.torch.visionnet import (VisionNetwork as
VisionNet)
from ray.rllib.models.torch.complex_input_net import \
ComplexInputNetwork as ComplexNet
elif framework == "jax":
from ray.rllib.models.jax.fcnet import (FullyConnectedNetwork as
FCNet)
else:
raise ValueError(
"framework={} not supported in `ModelCatalog._get_v2_model_"
"class`!".format(framework))
# Discrete/1D obs-spaces or 2D obs space but traj. view framestacking
# disabled.
num_framestacks = model_config.get("num_framestacks", "auto")
# Tuple space, where at least one sub-space is image.
# -> Complex input model.
space_to_check = input_space if not hasattr(
input_space, "original_space") else input_space.original_space
if isinstance(input_space,
Tuple) or (isinstance(space_to_check, Tuple) and any(
isinstance(s, Box) and len(s.shape) >= 2
for s in space_to_check.spaces)):
return ComplexNet
# Single, flattenable/one-hot-able space -> Simple FCNet.
if isinstance(input_space, (Discrete, MultiDiscrete)) or \
len(input_space.shape) == 1 or (
len(input_space.shape) == 2 and (
num_framestacks == "auto" or num_framestacks <= 1)):
# Keras native requested AND no auto-rnn-wrapping AND .
if model_config.get("_use_default_native_models") and \
Keras_FCNet and not model_config.get("use_lstm") and \
not model_config.get("use_attention"):
return Keras_FCNet
# Classic ModelV2 FCNet.
else:
return FCNet
elif framework == "jax":
raise NotImplementedError("No non-FC default net for JAX yet!")
# Last resort: Conv2D stack for single image spaces.
return VisionNet
@staticmethod
def _get_multi_action_distribution(dist_class, action_space, config,
framework):
# In case the custom distribution is a child of MultiActionDistr.
# If users want to completely ignore the suggested child
# distributions, they should simply do so in their custom class'
# constructor.
if issubclass(dist_class,
(MultiActionDistribution, TorchMultiActionDistribution)):
flat_action_space = flatten_space(action_space)
child_dists_and_in_lens = tree.map_structure(
lambda s: ModelCatalog.get_action_dist(
s, config, framework=framework), flat_action_space)
child_dists = [e[0] for e in child_dists_and_in_lens]
input_lens = [int(e[1]) for e in child_dists_and_in_lens]
return partial(
dist_class,
action_space=action_space,
child_distributions=child_dists,
input_lens=input_lens), int(sum(input_lens))
return dist_class, dist_class.required_model_output_shape(
action_space, config)
@staticmethod
def _validate_config(config: ModelConfigDict, framework: str) -> None:
"""Validates a given model config dict.
Args:
config (ModelConfigDict): The "model" sub-config dict
within the Trainer's config dict.
framework (str): One of "jax", "tf2", "tf", "tfe", or "torch".
Raises:
ValueError: If something is wrong with the given config.
"""
if config.get("use_attention") and config.get("use_lstm"):
raise ValueError("Only one of `use_lstm` or `use_attention` may "
"be set to True!")
if framework == "jax":
if config.get("use_attention"):
raise ValueError("`use_attention` not available for "
"framework=jax so far!")
elif config.get("use_lstm"):
raise ValueError("`use_lstm` not available for "
"framework=jax so far!")
if config.get("framestack") != DEPRECATED_VALUE:
# deprecation_warning(
# old="framestack", new="num_framestacks (int)", error=False)
# If old behavior is desired, disable traj. view-style
# framestacking.
config["num_framestacks"] = 0