mirror of
https://github.com/vale981/ray
synced 2025-03-08 19:41:38 -05:00

* Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
102 lines
4.1 KiB
Python
102 lines
4.1 KiB
Python
import numpy as np
|
|
import unittest
|
|
|
|
import ray.rllib.agents.dqn as dqn
|
|
from ray.rllib.agents.dqn.simple_q_tf_policy import build_q_losses as loss_tf
|
|
from ray.rllib.agents.dqn.simple_q_torch_policy import build_q_losses as \
|
|
loss_torch
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.numpy import fc, one_hot, huber_loss
|
|
from ray.rllib.utils.test_utils import check, framework_iterator
|
|
|
|
tf = try_import_tf()
|
|
|
|
|
|
class TestSimpleQ(unittest.TestCase):
|
|
def test_simple_q_compilation(self):
|
|
"""Test whether a SimpleQTrainer can be built on all frameworks."""
|
|
config = dqn.SIMPLE_Q_DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
|
|
for _ in framework_iterator(config):
|
|
trainer = dqn.SimpleQTrainer(config=config, env="CartPole-v0")
|
|
num_iterations = 2
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
print(results)
|
|
|
|
def test_simple_q_loss_function(self):
|
|
"""Tests the Simple-Q loss function results on all frameworks."""
|
|
config = dqn.SIMPLE_Q_DEFAULT_CONFIG.copy()
|
|
# Run locally.
|
|
config["num_workers"] = 0
|
|
# Use very simple net (layer0=10 nodes, q-layer=2 nodes (2 actions)).
|
|
config["model"]["fcnet_hiddens"] = [10]
|
|
config["model"]["fcnet_activation"] = "linear"
|
|
|
|
for fw in framework_iterator(config):
|
|
# Generate Trainer and get its default Policy object.
|
|
trainer = dqn.SimpleQTrainer(config=config, env="CartPole-v0")
|
|
policy = trainer.get_policy()
|
|
# Batch of size=2.
|
|
input_ = {
|
|
SampleBatch.CUR_OBS: np.random.random(size=(2, 4)),
|
|
SampleBatch.ACTIONS: np.array([0, 1]),
|
|
SampleBatch.REWARDS: np.array([0.4, -1.23]),
|
|
SampleBatch.DONES: np.array([False, False]),
|
|
SampleBatch.NEXT_OBS: np.random.random(size=(2, 4))
|
|
}
|
|
# Get model vars for computing expected model outs (q-vals).
|
|
# 0=layer-kernel; 1=layer-bias; 2=q-val-kernel; 3=q-val-bias
|
|
vars = policy.get_weights()
|
|
if isinstance(vars, dict):
|
|
vars = list(vars.values())
|
|
vars_t = policy.target_q_func_vars
|
|
if fw == "tf":
|
|
vars_t = policy.get_session().run(vars_t)
|
|
|
|
# Q(s,a) outputs.
|
|
q_t = np.sum(
|
|
one_hot(input_[SampleBatch.ACTIONS], 2) * fc(
|
|
fc(input_[SampleBatch.CUR_OBS],
|
|
vars[0 if fw != "torch" else 2],
|
|
vars[1 if fw != "torch" else 3],
|
|
framework=fw),
|
|
vars[2 if fw != "torch" else 0],
|
|
vars[3 if fw != "torch" else 1],
|
|
framework=fw), 1)
|
|
# max[a'](Qtarget(s',a')) outputs.
|
|
q_target_tp1 = np.max(
|
|
fc(fc(
|
|
input_[SampleBatch.NEXT_OBS],
|
|
vars_t[0 if fw != "torch" else 2],
|
|
vars_t[1 if fw != "torch" else 3],
|
|
framework=fw),
|
|
vars_t[2 if fw != "torch" else 0],
|
|
vars_t[3 if fw != "torch" else 1],
|
|
framework=fw), 1)
|
|
# TD-errors (Bellman equation).
|
|
td_error = q_t - config["gamma"] * input_[SampleBatch.REWARDS] + \
|
|
q_target_tp1
|
|
# Huber/Square loss on TD-error.
|
|
expected_loss = huber_loss(td_error).mean()
|
|
|
|
if fw == "torch":
|
|
input_ = policy._lazy_tensor_dict(input_)
|
|
# Get actual out and compare.
|
|
if fw == "tf":
|
|
out = policy.get_session().run(
|
|
policy._loss,
|
|
feed_dict=policy._get_loss_inputs_dict(
|
|
input_, shuffle=False))
|
|
else:
|
|
out = (loss_torch if fw == "torch" else
|
|
loss_tf)(policy, policy.model, None, input_)
|
|
check(out, expected_loss, decimals=1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|