mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
50 lines
1.8 KiB
Python
50 lines
1.8 KiB
Python
from typing import Optional
|
|
|
|
from ray.rllib.utils.annotations import override, PublicAPI
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.schedules.schedule import Schedule
|
|
from ray.rllib.utils.typing import TensorType
|
|
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
@PublicAPI
|
|
class ExponentialSchedule(Schedule):
|
|
"""Exponential decay schedule from `initial_p` to `final_p`.
|
|
|
|
Reduces output over `schedule_timesteps`. After this many time steps
|
|
always returns `final_p`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
schedule_timesteps: int,
|
|
framework: Optional[str] = None,
|
|
initial_p: float = 1.0,
|
|
decay_rate: float = 0.1,
|
|
):
|
|
"""Initializes a ExponentialSchedule instance.
|
|
|
|
Args:
|
|
schedule_timesteps: Number of time steps for which to
|
|
linearly anneal initial_p to final_p.
|
|
framework: The framework descriptor string, e.g. "tf",
|
|
"torch", or None.
|
|
initial_p: Initial output value.
|
|
decay_rate: The percentage of the original value after
|
|
100% of the time has been reached (see formula above).
|
|
>0.0: The smaller the decay-rate, the stronger the decay.
|
|
1.0: No decay at all.
|
|
"""
|
|
super().__init__(framework=framework)
|
|
assert schedule_timesteps > 0
|
|
self.schedule_timesteps = schedule_timesteps
|
|
self.initial_p = initial_p
|
|
self.decay_rate = decay_rate
|
|
|
|
@override(Schedule)
|
|
def _value(self, t: TensorType) -> TensorType:
|
|
"""Returns the result of: initial_p * decay_rate ** (`t`/t_max)."""
|
|
if self.framework == "torch" and torch and isinstance(t, torch.Tensor):
|
|
t = t.float()
|
|
return self.initial_p * self.decay_rate ** (t / self.schedule_timesteps)
|