ray/rllib/agents/cql
gjoliver e7f9e8ceec
[RLlib] Report total_train_steps correctly for offline agents like CQL. (#20541)
* Fix trainer timestep reporting for offline agents like CQL.

* wip.

* extend timesteps_total to 200K for learning_tests_pendulum_cql test

Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-22 21:46:45 +01:00
..
tests [RLlib] Tf2 + eager-tracing same speed as framework=tf; Add more test coverage for tf2+tracing. (#19981) 2021-11-05 16:10:00 +01:00
__init__.py [RLlib] New Offline RL Algorithm: CQL (based on SAC) (#13118) 2020-12-30 10:11:57 -05:00
cql.py [RLlib] Report total_train_steps correctly for offline agents like CQL. (#20541) 2021-11-22 21:46:45 +01:00
cql_tf_policy.py [RLlib] Fix R2D2 (torch) multi-GPU issue. (#18550) 2021-09-14 19:58:10 +02:00
cql_torch_policy.py [RLlib] Fix deprecated warning for torch_ops.py (soft-replaced by torch_utils.py). (#19982) 2021-11-03 10:00:46 +01:00
README.md [RLlib] CQL Documentation + Tests (#14531) 2021-03-11 18:51:39 +01:00

Conservative Q-Learning (CQL)

Overview

CQL is an offline RL algorithm that mitigates the overestimation of Q-values outside the dataset distribution via convservative critic estimates. CQL does this by adding a simple Q regularizer loss to the standard Belman update loss. This ensures that the critic does not output overly-optimistic Q-values and can be added on top of any off-policy Q-learning algorithm (in this case, we use SAC).

Documentation & Implementation:

Conservative Q-Learning (CQL).

Detailed Documentation

Implementation