ray/rllib/tests/mock_worker.py
Sven 60d4d5e1aa Remove future imports (#6724)
* Remove all __future__ imports from RLlib.

* Remove (object) again from tf_run_builder.py::TFRunBuilder.

* Fix 2xLINT warnings.

* Fix broken appo_policy import (must be appo_tf_policy)

* Remove future imports from all other ray files (not just RLlib).

* Remove future imports from all other ray files (not just RLlib).

* Remove future import blocks that contain `unicode_literals` as well.
Revert appo_tf_policy.py to appo_policy.py (belongs to another PR).

* Add two empty lines before Schedule class.

* Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
2020-01-09 00:15:48 -08:00

50 lines
1.6 KiB
Python

import numpy as np
from ray.rllib.evaluation import SampleBatch
from ray.rllib.utils.filter import MeanStdFilter
class _MockWorker:
def __init__(self, sample_count=10):
self._weights = np.array([-10, -10, -10, -10])
self._grad = np.array([1, 1, 1, 1])
self._sample_count = sample_count
self.obs_filter = MeanStdFilter(())
self.rew_filter = MeanStdFilter(())
self.filters = {
"obs_filter": self.obs_filter,
"rew_filter": self.rew_filter
}
def sample(self):
samples_dict = {"observations": [], "rewards": []}
for i in range(self._sample_count):
samples_dict["observations"].append(
self.obs_filter(np.random.randn()))
samples_dict["rewards"].append(self.rew_filter(np.random.randn()))
return SampleBatch(samples_dict)
def compute_gradients(self, samples):
return self._grad * samples.count, {"batch_count": samples.count}
def apply_gradients(self, grads):
self._weights += self._grad
def get_weights(self):
return self._weights
def set_weights(self, weights):
self._weights = weights
def get_filters(self, flush_after=False):
obs_filter = self.obs_filter.copy()
rew_filter = self.rew_filter.copy()
if flush_after:
self.obs_filter.clear_buffer(), self.rew_filter.clear_buffer()
return {"obs_filter": obs_filter, "rew_filter": rew_filter}
def sync_filters(self, new_filters):
assert all(k in new_filters for k in self.filters)
for k in self.filters:
self.filters[k].sync(new_filters[k])