ray/rllib/algorithms/maml/maml_tf_policy.py

523 lines
19 KiB
Python

import logging
from typing import Dict, List, Type, Union
import ray
from ray.rllib.algorithms.ppo.ppo_tf_policy import validate_config
from ray.rllib.evaluation.postprocessing import (
Postprocessing,
compute_gae_for_sample_batch,
)
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.tf_action_dist import TFActionDistribution
from ray.rllib.models.utils import get_activation_fn
from ray.rllib.policy.dynamic_tf_policy_v2 import DynamicTFPolicyV2
from ray.rllib.policy.eager_tf_policy_v2 import EagerTFPolicyV2
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_mixins import (
LocalOptimizer,
ModelGradients,
ValueNetworkMixin,
compute_gradients,
)
from ray.rllib.utils import try_import_tf
from ray.rllib.utils.annotations import override
from ray.rllib.utils.typing import TensorType
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
def PPOLoss(
dist_class,
actions,
curr_logits,
behaviour_logits,
advantages,
value_fn,
value_targets,
vf_preds,
cur_kl_coeff,
entropy_coeff,
clip_param,
vf_clip_param,
vf_loss_coeff,
clip_loss=False,
):
def surrogate_loss(
actions, curr_dist, prev_dist, advantages, clip_param, clip_loss
):
pi_new_logp = curr_dist.logp(actions)
pi_old_logp = prev_dist.logp(actions)
logp_ratio = tf.math.exp(pi_new_logp - pi_old_logp)
if clip_loss:
return tf.minimum(
advantages * logp_ratio,
advantages
* tf.clip_by_value(logp_ratio, 1 - clip_param, 1 + clip_param),
)
return advantages * logp_ratio
def kl_loss(curr_dist, prev_dist):
return prev_dist.kl(curr_dist)
def entropy_loss(dist):
return dist.entropy()
def vf_loss(value_fn, value_targets, vf_preds, vf_clip_param=0.1):
# GAE Value Function Loss
vf_loss1 = tf.math.square(value_fn - value_targets)
vf_clipped = vf_preds + tf.clip_by_value(
value_fn - vf_preds, -vf_clip_param, vf_clip_param
)
vf_loss2 = tf.math.square(vf_clipped - value_targets)
vf_loss = tf.maximum(vf_loss1, vf_loss2)
return vf_loss
pi_new_dist = dist_class(curr_logits, None)
pi_old_dist = dist_class(behaviour_logits, None)
surr_loss = tf.reduce_mean(
surrogate_loss(
actions, pi_new_dist, pi_old_dist, advantages, clip_param, clip_loss
)
)
kl_loss = tf.reduce_mean(kl_loss(pi_new_dist, pi_old_dist))
vf_loss = tf.reduce_mean(vf_loss(value_fn, value_targets, vf_preds, vf_clip_param))
entropy_loss = tf.reduce_mean(entropy_loss(pi_new_dist))
total_loss = -surr_loss + cur_kl_coeff * kl_loss
total_loss += vf_loss_coeff * vf_loss - entropy_coeff * entropy_loss
return total_loss, surr_loss, kl_loss, vf_loss, entropy_loss
# This is the computation graph for workers (inner adaptation steps)
class WorkerLoss(object):
def __init__(
self,
dist_class,
actions,
curr_logits,
behaviour_logits,
advantages,
value_fn,
value_targets,
vf_preds,
cur_kl_coeff,
entropy_coeff,
clip_param,
vf_clip_param,
vf_loss_coeff,
clip_loss=False,
):
self.loss, surr_loss, kl_loss, vf_loss, ent_loss = PPOLoss(
dist_class=dist_class,
actions=actions,
curr_logits=curr_logits,
behaviour_logits=behaviour_logits,
advantages=advantages,
value_fn=value_fn,
value_targets=value_targets,
vf_preds=vf_preds,
cur_kl_coeff=cur_kl_coeff,
entropy_coeff=entropy_coeff,
clip_param=clip_param,
vf_clip_param=vf_clip_param,
vf_loss_coeff=vf_loss_coeff,
clip_loss=clip_loss,
)
self.loss = tf1.Print(self.loss, ["Worker Adapt Loss", self.loss])
# This is the Meta-Update computation graph for main (meta-update step)
class MAMLLoss(object):
def __init__(
self,
model,
config,
dist_class,
value_targets,
advantages,
actions,
behaviour_logits,
vf_preds,
cur_kl_coeff,
policy_vars,
obs,
num_tasks,
split,
inner_adaptation_steps=1,
entropy_coeff=0,
clip_param=0.3,
vf_clip_param=0.1,
vf_loss_coeff=1.0,
use_gae=True,
):
self.config = config
self.num_tasks = num_tasks
self.inner_adaptation_steps = inner_adaptation_steps
self.clip_param = clip_param
self.dist_class = dist_class
self.cur_kl_coeff = cur_kl_coeff
# Split episode tensors into [inner_adaptation_steps+1, num_tasks, -1]
self.obs = self.split_placeholders(obs, split)
self.actions = self.split_placeholders(actions, split)
self.behaviour_logits = self.split_placeholders(behaviour_logits, split)
self.advantages = self.split_placeholders(advantages, split)
self.value_targets = self.split_placeholders(value_targets, split)
self.vf_preds = self.split_placeholders(vf_preds, split)
# Construct name to tensor dictionary for easier indexing
self.policy_vars = {}
for var in policy_vars:
self.policy_vars[var.name] = var
# Calculate pi_new for PPO
pi_new_logits, current_policy_vars, value_fns = [], [], []
for i in range(self.num_tasks):
pi_new, value_fn = self.feed_forward(
self.obs[0][i], self.policy_vars, policy_config=config["model"]
)
pi_new_logits.append(pi_new)
value_fns.append(value_fn)
current_policy_vars.append(self.policy_vars)
inner_kls = []
inner_ppo_loss = []
# Recompute weights for inner-adaptation (same weights as workers)
for step in range(self.inner_adaptation_steps):
kls = []
for i in range(self.num_tasks):
# PPO Loss Function (only Surrogate)
ppo_loss, _, kl_loss, _, _ = PPOLoss(
dist_class=dist_class,
actions=self.actions[step][i],
curr_logits=pi_new_logits[i],
behaviour_logits=self.behaviour_logits[step][i],
advantages=self.advantages[step][i],
value_fn=value_fns[i],
value_targets=self.value_targets[step][i],
vf_preds=self.vf_preds[step][i],
cur_kl_coeff=0.0,
entropy_coeff=entropy_coeff,
clip_param=clip_param,
vf_clip_param=vf_clip_param,
vf_loss_coeff=vf_loss_coeff,
clip_loss=False,
)
adapted_policy_vars = self.compute_updated_variables(
ppo_loss, current_policy_vars[i]
)
pi_new_logits[i], value_fns[i] = self.feed_forward(
self.obs[step + 1][i],
adapted_policy_vars,
policy_config=config["model"],
)
current_policy_vars[i] = adapted_policy_vars
kls.append(kl_loss)
inner_ppo_loss.append(ppo_loss)
self.kls = kls
inner_kls.append(kls)
mean_inner_kl = tf.stack(
[tf.reduce_mean(tf.stack(inner_kl)) for inner_kl in inner_kls]
)
self.mean_inner_kl = mean_inner_kl
ppo_obj = []
for i in range(self.num_tasks):
ppo_loss, surr_loss, kl_loss, val_loss, entropy_loss = PPOLoss(
dist_class=dist_class,
actions=self.actions[self.inner_adaptation_steps][i],
curr_logits=pi_new_logits[i],
behaviour_logits=self.behaviour_logits[self.inner_adaptation_steps][i],
advantages=self.advantages[self.inner_adaptation_steps][i],
value_fn=value_fns[i],
value_targets=self.value_targets[self.inner_adaptation_steps][i],
vf_preds=self.vf_preds[self.inner_adaptation_steps][i],
cur_kl_coeff=0.0,
entropy_coeff=entropy_coeff,
clip_param=clip_param,
vf_clip_param=vf_clip_param,
vf_loss_coeff=vf_loss_coeff,
clip_loss=True,
)
ppo_obj.append(ppo_loss)
self.mean_policy_loss = surr_loss
self.mean_kl = kl_loss
self.mean_vf_loss = val_loss
self.mean_entropy = entropy_loss
self.inner_kl_loss = tf.reduce_mean(
tf.multiply(self.cur_kl_coeff, mean_inner_kl)
)
self.loss = tf.reduce_mean(tf.stack(ppo_obj, axis=0)) + self.inner_kl_loss
self.loss = tf1.Print(
self.loss, ["Meta-Loss", self.loss, "Inner KL", self.mean_inner_kl]
)
def feed_forward(self, obs, policy_vars, policy_config):
# Hacky for now, reconstruct FC network with adapted weights
# @mluo: TODO for any network
def fc_network(
inp, network_vars, hidden_nonlinearity, output_nonlinearity, policy_config
):
bias_added = False
x = inp
for name, param in network_vars.items():
if "kernel" in name:
x = tf.matmul(x, param)
elif "bias" in name:
x = tf.add(x, param)
bias_added = True
else:
raise NameError
if bias_added:
if "out" not in name:
x = hidden_nonlinearity(x)
elif "out" in name:
x = output_nonlinearity(x)
else:
raise NameError
bias_added = False
return x
policyn_vars = {}
valuen_vars = {}
log_std = None
for name, param in policy_vars.items():
if "value" in name:
valuen_vars[name] = param
elif "log_std" in name:
log_std = param
else:
policyn_vars[name] = param
output_nonlinearity = tf.identity
hidden_nonlinearity = get_activation_fn(policy_config["fcnet_activation"])
pi_new_logits = fc_network(
obs, policyn_vars, hidden_nonlinearity, output_nonlinearity, policy_config
)
if log_std is not None:
pi_new_logits = tf.concat([pi_new_logits, 0.0 * pi_new_logits + log_std], 1)
value_fn = fc_network(
obs, valuen_vars, hidden_nonlinearity, output_nonlinearity, policy_config
)
return pi_new_logits, tf.reshape(value_fn, [-1])
def compute_updated_variables(self, loss, network_vars):
grad = tf.gradients(loss, list(network_vars.values()))
adapted_vars = {}
for i, tup in enumerate(network_vars.items()):
name, var = tup
if grad[i] is None:
adapted_vars[name] = var
else:
adapted_vars[name] = var - self.config["inner_lr"] * grad[i]
return adapted_vars
def split_placeholders(self, placeholder, split):
inner_placeholder_list = tf.split(
placeholder, tf.math.reduce_sum(split, axis=1), axis=0
)
placeholder_list = []
for index, split_placeholder in enumerate(inner_placeholder_list):
placeholder_list.append(tf.split(split_placeholder, split[index], axis=0))
return placeholder_list
class KLCoeffMixin:
def __init__(self, config):
self.kl_coeff_val = [config["kl_coeff"]] * config["inner_adaptation_steps"]
self.kl_target = self.config["kl_target"]
self.kl_coeff = tf1.get_variable(
initializer=tf.keras.initializers.Constant(self.kl_coeff_val),
name="kl_coeff",
shape=(config["inner_adaptation_steps"]),
trainable=False,
dtype=tf.float32,
)
def update_kls(self, sampled_kls):
for i, kl in enumerate(sampled_kls):
if kl < self.kl_target / 1.5:
self.kl_coeff_val[i] *= 0.5
elif kl > 1.5 * self.kl_target:
self.kl_coeff_val[i] *= 2.0
print(self.kl_coeff_val)
self.kl_coeff.load(self.kl_coeff_val, session=self.get_session())
return self.kl_coeff_val
# We need this builder function because we want to share the same
# custom logics between TF1 dynamic and TF2 eager policies.
def get_maml_tf_policy(name: str, base: type) -> type:
"""Construct a MAMLTFPolicy inheriting either dynamic or eager base policies.
Args:
base: Base class for this policy. DynamicTFPolicyV2 or EagerTFPolicyV2.
Returns:
A TF Policy to be used with MAML.
"""
class MAMLTFPolicy(KLCoeffMixin, ValueNetworkMixin, base):
def __init__(
self,
obs_space,
action_space,
config,
existing_model=None,
existing_inputs=None,
):
# First thing first, enable eager execution if necessary.
base.enable_eager_execution_if_necessary()
config = dict(ray.rllib.algorithms.maml.maml.DEFAULT_CONFIG, **config)
validate_config(config)
# Initialize base class.
base.__init__(
self,
obs_space,
action_space,
config,
existing_inputs=existing_inputs,
existing_model=existing_model,
)
KLCoeffMixin.__init__(self, config)
ValueNetworkMixin.__init__(self, config)
# Create the `split` placeholder before initialize loss.
if self.framework == "tf":
self._loss_input_dict["split"] = tf1.placeholder(
tf.int32,
name="Meta-Update-Splitting",
shape=(
self.config["inner_adaptation_steps"] + 1,
self.config["num_workers"],
),
)
# Note: this is a bit ugly, but loss and optimizer initialization must
# happen after all the MixIns are initialized.
self.maybe_initialize_optimizer_and_loss()
@override(base)
def loss(
self,
model: Union[ModelV2, "tf.keras.Model"],
dist_class: Type[TFActionDistribution],
train_batch: SampleBatch,
) -> Union[TensorType, List[TensorType]]:
logits, state = model(train_batch)
self.cur_lr = self.config["lr"]
if self.config["worker_index"]:
self.loss_obj = WorkerLoss(
dist_class=dist_class,
actions=train_batch[SampleBatch.ACTIONS],
curr_logits=logits,
behaviour_logits=train_batch[SampleBatch.ACTION_DIST_INPUTS],
advantages=train_batch[Postprocessing.ADVANTAGES],
value_fn=model.value_function(),
value_targets=train_batch[Postprocessing.VALUE_TARGETS],
vf_preds=train_batch[SampleBatch.VF_PREDS],
cur_kl_coeff=0.0,
entropy_coeff=self.config["entropy_coeff"],
clip_param=self.config["clip_param"],
vf_clip_param=self.config["vf_clip_param"],
vf_loss_coeff=self.config["vf_loss_coeff"],
clip_loss=False,
)
else:
self.var_list = tf1.get_collection(
tf1.GraphKeys.TRAINABLE_VARIABLES, tf1.get_variable_scope().name
)
self.loss_obj = MAMLLoss(
model=model,
dist_class=dist_class,
value_targets=train_batch[Postprocessing.VALUE_TARGETS],
advantages=train_batch[Postprocessing.ADVANTAGES],
actions=train_batch[SampleBatch.ACTIONS],
behaviour_logits=train_batch[SampleBatch.ACTION_DIST_INPUTS],
vf_preds=train_batch[SampleBatch.VF_PREDS],
cur_kl_coeff=self.kl_coeff,
policy_vars=self.var_list,
obs=train_batch[SampleBatch.CUR_OBS],
num_tasks=self.config["num_workers"],
split=train_batch["split"],
config=self.config,
inner_adaptation_steps=self.config["inner_adaptation_steps"],
entropy_coeff=self.config["entropy_coeff"],
clip_param=self.config["clip_param"],
vf_clip_param=self.config["vf_clip_param"],
vf_loss_coeff=self.config["vf_loss_coeff"],
use_gae=self.config["use_gae"],
)
return self.loss_obj.loss
@override(base)
def optimizer(
self,
) -> Union[
"tf.keras.optimizers.Optimizer", List["tf.keras.optimizers.Optimizer"]
]:
"""
Workers use simple SGD for inner adaptation
Meta-Policy uses Adam optimizer for meta-update
"""
if not self.config["worker_index"]:
return tf1.train.AdamOptimizer(learning_rate=self.config["lr"])
return tf1.train.GradientDescentOptimizer(
learning_rate=self.config["inner_lr"]
)
@override(base)
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
if self.config["worker_index"]:
return {"worker_loss": self.loss_obj.loss}
else:
return {
"cur_kl_coeff": tf.cast(self.kl_coeff, tf.float64),
"cur_lr": tf.cast(self.cur_lr, tf.float64),
"total_loss": self.loss_obj.loss,
"policy_loss": self.loss_obj.mean_policy_loss,
"vf_loss": self.loss_obj.mean_vf_loss,
"kl": self.loss_obj.mean_kl,
"inner_kl": self.loss_obj.mean_inner_kl,
"entropy": self.loss_obj.mean_entropy,
}
@override(base)
def postprocess_trajectory(
self, sample_batch, other_agent_batches=None, episode=None
):
sample_batch = super().postprocess_trajectory(sample_batch)
return compute_gae_for_sample_batch(
self, sample_batch, other_agent_batches, episode
)
@override(base)
def compute_gradients_fn(
self, optimizer: LocalOptimizer, loss: TensorType
) -> ModelGradients:
return compute_gradients(self, optimizer, loss)
MAMLTFPolicy.__name__ = name
MAMLTFPolicy.__qualname__ = name
return MAMLTFPolicy
MAMLTF1Policy = get_maml_tf_policy("MAMLTF1Policy", DynamicTFPolicyV2)
MAMLTF2Policy = get_maml_tf_policy("MAMLTF2Policy", EagerTFPolicyV2)