ray/rllib/algorithms/dqn/tests/test_dqn.py

133 lines
4.7 KiB
Python

from copy import deepcopy
import numpy as np
import unittest
import ray
import ray.rllib.algorithms.dqn as dqn
from ray.rllib.utils.test_utils import (
check,
check_compute_single_action,
check_train_results,
framework_iterator,
)
class TestDQN(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_dqn_compilation(self):
"""Test whether DQN can be built on all frameworks."""
num_iterations = 1
config = (
dqn.dqn.DQNConfig()
.rollouts(num_rollout_workers=2)
.training(num_steps_sampled_before_learning_starts=0)
)
for _ in framework_iterator(config, with_eager_tracing=True):
# Double-dueling DQN.
print("Double-dueling")
plain_config = deepcopy(config)
trainer = dqn.DQN(config=plain_config, env="CartPole-v0")
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
check_compute_single_action(trainer)
trainer.stop()
# Rainbow.
print("Rainbow")
rainbow_config = deepcopy(config).training(
num_atoms=10, noisy=True, double_q=True, dueling=True, n_step=5
)
trainer = dqn.DQN(config=rainbow_config, env="CartPole-v0")
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
check_compute_single_action(trainer)
trainer.stop()
def test_dqn_exploration_and_soft_q_config(self):
"""Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
config = (
dqn.dqn.DQNConfig()
.rollouts(num_rollout_workers=0)
.environment(env_config={"is_slippery": False, "map_name": "4x4"})
).training(num_steps_sampled_before_learning_starts=0)
obs = np.array(0)
# Test against all frameworks.
for _ in framework_iterator(config):
# Default EpsilonGreedy setup.
trainer = dqn.DQN(config=config, env="FrozenLake-v1")
# Setting explore=False should always return the same action.
a_ = trainer.compute_single_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_single_action(obs, explore=False)
check(a, a_)
# explore=None (default: explore) should return different actions.
actions = []
for _ in range(50):
actions.append(trainer.compute_single_action(obs))
check(np.std(actions), 0.0, false=True)
trainer.stop()
# Low softmax temperature. Behaves like argmax
# (but no epsilon exploration).
config.exploration(
exploration_config={"type": "SoftQ", "temperature": 0.000001}
)
trainer = dqn.DQN(config=config, env="FrozenLake-v1")
# Due to the low temp, always expect the same action.
actions = [trainer.compute_single_action(obs)]
for _ in range(50):
actions.append(trainer.compute_single_action(obs))
check(np.std(actions), 0.0, decimals=3)
trainer.stop()
# Higher softmax temperature.
config.exploration_config["temperature"] = 1.0
trainer = dqn.DQN(config=config, env="FrozenLake-v1")
# Even with the higher temperature, if we set explore=False, we
# should expect the same actions always.
a_ = trainer.compute_single_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_single_action(obs, explore=False)
check(a, a_)
# Due to the higher temp, expect different actions avg'ing
# around 1.5.
actions = []
for _ in range(300):
actions.append(trainer.compute_single_action(obs))
check(np.std(actions), 0.0, false=True)
trainer.stop()
# With Random exploration.
config.exploration(exploration_config={"type": "Random"}, explore=True)
trainer = dqn.DQN(config=config, env="FrozenLake-v1")
actions = []
for _ in range(300):
actions.append(trainer.compute_single_action(obs))
check(np.std(actions), 0.0, false=True)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))