ray/doc/source/tune/api_docs/suggestion.rst
2020-05-18 10:08:29 -07:00

199 lines
7.7 KiB
ReStructuredText

.. _tune-search-alg:
Search Algorithms (tune.suggest)
================================
Tune's Search Algorithms are wrappers around open-source optimization libraries for efficient hyperparameter selection. Each library has a specific way of defining the search space - please refer to their documentation for more details.
You can utilize these search algorithms as follows:
.. code-block:: python
from ray.tune.suggest.hyperopt import HyperOptSearch
tune.run(my_function, search_alg=HyperOptSearch(...))
Summary
-------
.. list-table::
:header-rows: 1
* - SearchAlgorithm
- Summary
- Website
- Code Example
* - :ref:`AxSearch <tune-ax>`
- Bayesian/Bandit Optimization
- [`Ax <https://ax.dev/>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/ax_example.py>`__
* - :ref:`DragonflySearch <Dragonfly>`
- Scalable Bayesian Optimization
- [`Dragonfly <https://dragonfly-opt.readthedocs.io/>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/dragonfly_example.py>`__
* - :ref:`SkoptSearch <skopt>`
- Bayesian Optimization
- [`Scikit-Optimize <https://scikit-optimize.github.io>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/skopt_example.py>`__
* - :ref:`HyperOptSearch <tune-hyperopt>`
- Tree-Parzen Estimators
- [`HyperOpt <http://hyperopt.github.io/hyperopt>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/hyperopt_example.py>`__
* - :ref:`BayesOptSearch <bayesopt>`
- Bayesian Optimization
- [`BayesianOptimization <https://github.com/fmfn/BayesianOptimization>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/bayesopt_example.py>`__
* - :ref:`TuneBOHB <suggest-TuneBOHB>`
- Bayesian Opt/HyperBand
- [`BOHB <https://github.com/automl/HpBandSter>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/bohb_example.py>`__
* - :ref:`NevergradSearch <nevergrad>`
- Gradient-free Optimization
- [`Nevergrad <https://github.com/facebookresearch/nevergrad>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/nevergrad_example.py>`__
* - :ref:`ZOOptSearch <zoopt>`
- Zeroth-order Optimization
- [`ZOOpt <https://github.com/polixir/ZOOpt>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/zoopt_example.py>`__
* - :ref:`SigOptSearch <sigopt>`
- Closed source
- [`SigOpt <https://sigopt.com/>`__]
- `Link <https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/sigopt_example.py>`__
.. note::Search algorithms will require a different search space declaration than the default Tune format - meaning that you will not be able to combine ``tune.grid_search`` with the below integrations.
.. note:: Unlike :ref:`Tune's Trial Schedulers <tune-schedulers>`, Tune SearchAlgorithms cannot affect or stop training processes. However, you can use them together to **early stop the evaluation of bad trials**.
**Want to use your own algorithm?** The interface is easy to implement. :ref:`Read instructions here <byo-algo>`.
Tune also provides helpful utilities to use with Search Algorithms:
* :ref:`repeater`: Support for running each *sampled hyperparameter* with multiple random seeds.
* :ref:`limiter`: Limits the amount of concurrent trials when running optimization.
.. _tune-ax:
Ax (tune.suggest.ax.AxSearch)
-----------------------------
.. autoclass:: ray.tune.suggest.ax.AxSearch
.. _bayesopt:
Bayesian Optimization (tune.suggest.bayesopt.BayesOptSearch)
------------------------------------------------------------
.. autoclass:: ray.tune.suggest.bayesopt.BayesOptSearch
.. _`BayesianOptimization search space specification`: https://github.com/fmfn/BayesianOptimization/blob/master/examples/advanced-tour.ipynb
.. _suggest-TuneBOHB:
BOHB (tune.suggest.bohb.TuneBOHB)
---------------------------------
BOHB (Bayesian Optimization HyperBand) is an algorithm that both terminates bad trials and also uses Bayesian Optimization to improve the hyperparameter search. It is backed by the `HpBandSter library <https://github.com/automl/HpBandSter>`_.
Importantly, BOHB is intended to be paired with a specific scheduler class: :ref:`HyperBandForBOHB <tune-scheduler-bohb>`.
This algorithm requires using the `ConfigSpace search space specification <https://automl.github.io/HpBandSter/build/html/quickstart.html#searchspace>`_. In order to use this search algorithm, you will need to install ``HpBandSter`` and ``ConfigSpace``:
.. code-block:: bash
$ pip install hpbandster ConfigSpace
See the `BOHB paper <https://arxiv.org/abs/1807.01774>`_ for more details.
.. autoclass:: ray.tune.suggest.bohb.TuneBOHB
.. _Dragonfly:
Dragonfly (tune.suggest.dragonfly.DragonflySearch)
--------------------------------------------------
.. autoclass:: ray.tune.suggest.dragonfly.DragonflySearch
.. _tune-hyperopt:
HyperOpt (tune.suggest.hyperopt.HyperOptSearch)
-----------------------------------------------
.. autoclass:: ray.tune.suggest.hyperopt.HyperOptSearch
.. _nevergrad:
Nevergrad (tune.suggest.nevergrad.NevergradSearch)
--------------------------------------------------
.. autoclass:: ray.tune.suggest.nevergrad.NevergradSearch
.. _`Nevergrad README's Optimization section`: https://github.com/facebookresearch/nevergrad/blob/master/docs/optimization.rst#choosing-an-optimizer
.. _sigopt:
SigOpt (tune.suggest.sigopt.SigOptSearch)
-----------------------------------------
You will need to use the `SigOpt experiment and space specification <https://app.sigopt.com/docs/overview/create>`__ to specify your search space.
.. autoclass:: ray.tune.suggest.sigopt.SigOptSearch
.. _skopt:
Scikit-Optimize (tune.suggest.skopt.SkOptSearch)
------------------------------------------------
.. autoclass:: ray.tune.suggest.skopt.SkOptSearch
.. _`skopt Optimizer object`: https://scikit-optimize.github.io/#skopt.Optimizer
.. _zoopt:
ZOOpt (tune.suggest.zoopt.ZOOptSearch)
--------------------------------------
.. autoclass:: ray.tune.suggest.zoopt.ZOOptSearch
.. _repeater:
Repeated Evaluations (tune.suggest.Repeater)
--------------------------------------------
Use ``ray.tune.suggest.Repeater`` to average over multiple evaluations of the same
hyperparameter configurations. This is useful in cases where the evaluated
training procedure has high variance (i.e., in reinforcement learning).
By default, ``Repeater`` will take in a ``repeat`` parameter and a ``search_alg``.
The ``search_alg`` will suggest new configurations to try, and the ``Repeater``
will run ``repeat`` trials of the configuration. It will then average the
``search_alg.metric`` from the final results of each repeated trial.
.. warning:: It is recommended to not use ``Repeater`` with a TrialScheduler.
Early termination can negatively affect the average reported metric.
.. autoclass:: ray.tune.suggest.Repeater
.. _limiter:
ConcurrencyLimiter (tune.suggest.ConcurrencyLimiter)
----------------------------------------------------
Use ``ray.tune.suggest.ConcurrencyLimiter`` to limit the amount of concurrency when using a search algorithm. This is useful when a given optimization algorithm does not parallelize very well (like a naive Bayesian Optimization).
.. autoclass:: ray.tune.suggest.ConcurrencyLimiter
.. _byo-algo:
Implementing your own Search Algorithm
--------------------------------------
If you are interested in implementing or contributing a new Search Algorithm, provide the following interface:
.. autoclass:: ray.tune.suggest.Searcher
:members:
:private-members:
:show-inheritance: