mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
48 lines
1.4 KiB
Python
48 lines
1.4 KiB
Python
# This workload tests running many instances of PPO (many actors)
|
|
# This covers https://github.com/ray-project/ray/pull/12148
|
|
|
|
import ray
|
|
from ray.tune import run_experiments
|
|
from ray.tune.utils.release_test_util import ProgressCallback
|
|
from ray._private.test_utils import monitor_memory_usage
|
|
|
|
num_redis_shards = 5
|
|
redis_max_memory = 10**8
|
|
object_store_memory = 10**9
|
|
num_nodes = 3
|
|
|
|
message = ("Make sure there is enough memory on this machine to run this "
|
|
"workload. We divide the system memory by 2 to provide a buffer.")
|
|
assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory <
|
|
ray._private.utils.get_system_memory() / 2), message
|
|
|
|
# Simulate a cluster on one machine.
|
|
|
|
ray.init(address="auto")
|
|
monitor_actor = monitor_memory_usage()
|
|
|
|
# Run the workload.
|
|
|
|
run_experiments(
|
|
{
|
|
"ppo": {
|
|
"run": "PPO",
|
|
"env": "CartPole-v0",
|
|
"num_samples": 10000,
|
|
"config": {
|
|
"framework": "torch",
|
|
"num_workers": 7,
|
|
"num_gpus": 0,
|
|
"num_sgd_iter": 1,
|
|
},
|
|
"stop": {
|
|
"timesteps_total": 1,
|
|
},
|
|
}
|
|
},
|
|
callbacks=[ProgressCallback()])
|
|
|
|
ray.get(monitor_actor.stop_run.remote())
|
|
used_gb, usage = ray.get(monitor_actor.get_peak_memory_info.remote())
|
|
print(f"Peak memory usage: {round(used_gb, 2)}GB")
|
|
print(f"Peak memory usage per processes:\n {usage}")
|